Skip to main content
Log in

Undrained Static Response of Loose and Medium Dense Silty Sand of Mostaganem (Northern Algeria)

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Critical undrained shear strength of sandy soils is a fundamental parameter in stability analysis. This will help to evaluate the occurrence of flow deformation under liquefaction phenomena. A precise evaluation of the undrained liquefaction strength is very important for the design of soil structures such as earth dams, building foundations and soil densification process which can avoid catastrophic failure due to soil instability. In this work, laboratory investigation on natural and on reconstituted soil specimens of silica sands was carried out to enable the analysis of its mechanical behavior. Several concepts have been proposed by many researchers in order to characterize instability of silty sands. However, a review of studies published in the literature indicates that no clear conclusions can be drawn as to what manner the variation of fine content affects the mechanical behavior. The present paper is an attempt to experimentally describe mechanical behavior and theoretically justify such response of loose and medium dense sand by means of critical state parameters. Two distinct stress path tendencies have been shown in this study. In undrained conditions, loose samples show amplified contractive phase with fine content ranging from 0 to 30%, while medium dense samples exhibit a contractive phase followed by a dilative phase with fine contents beyond 30%. In this study, it has been shown that the strength of sand fabric of carrying loads becomes weaker and the critical state parameter increases with the increase in fine content leading to the reduction of normalized critical undrained shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Skempton coefficient

CSL:

Critical state line

D r :

Initial relative density

e :

Global void ratio

i :

Starting point of the undrained stress path (A, B or C)

i 1 :

Point at the peak of the undrained stress path (A1, B1 or C1)

i 2 :

Point at the CSL of the undrained stress path (A2, B2 or C2)

e i :

Void ratio at point (i)

e CSL(i):

Void ratio at critical state at point (i)

e max :

Maximum void ratio

e min :

Minimum void ratio

F C :

Fine content (%)

G S :

Specific gravity of soil grain

C u :

Uniformity coefficient

C c :

Coefficient of curvature

p′ :

Effective mean stress

\({p^{\prime}_{\rm C}}\) :

Confining stress

\({p^{\prime}_{{\rm CSL}(i)} }\) :

Effective mean stress at critical state (undrained stress path starting from point i)

q :

Deviatoric stress

\({q^{\prime}_{{\rm CSL}(i2)} }\) :

Deviatoric stress at critical state at point (i2)

q S :

Deviatoric stress at critical state

q yield :

Maximum deviatoric stress

S ucr :

Undrained critical shear strength

S ucr(i):

Undrained critical shear strength (undrained stress path starting from point i)

S ucr(yield) :

Yield shear strength

Δu :

Excess pore water pressure

É› a :

Axial strain

D i :

Grain diameter corresponding to i % finer

σ 1 :

Major principal stress

σ 3 :

Minor principal stress

I p :

Plasticity index

M:

Slope of critical state line in (q, p′) plane

\({\phi_{\rm s}}\) :

Mobilized angle of inter-particle friction at the critical state

\({\psi _{{\rm CSL}} }\) :

State parameter

\({\psi _{{\rm CSL}(i)} }\) :

State parameter at point (i)

λ CSL :

Critical state parameter (shearing–compressibility soil property)

Γ CSL :

Critical state parameter

References

  1. Idriss I.M., Boulanger R.W.: Soil Liquefaction During Earthquakes. Earthquakes Engineering Research Institut (EERI), Oakland (2008)

    Google Scholar 

  2. Lenart S., Koseki J., Miyashita Y.: A soil liquefaction in the tone river basin during the 2011 earthquake of the pacific coast of Tohoku. Acta Geotech. Slov. 9(2), 5–15 (2012)

    Google Scholar 

  3. Eskisar T., Karakan E., Altun S.: Evaluation of cyclic stress–strain and liquefaction behavior of Izmir sand. Arab. J. Sci. Eng. 39, 7513–7524 (2014). doi:10.1007/s13369-014-1312-3

    Article  Google Scholar 

  4. Olson S.M., Stark T.D.: Yield strength ratio and liquefaction analysis of slopes and embankments. J. Geotech. Geoenviron. Eng. 129(8), 727–737 (2003). doi:10.1061/(ASCE)1090-0241(2003)129:8(727)

    Article  Google Scholar 

  5. Belkhatir M., Schanz T., Arab A., Della N.: Experimental study on the power water pressure generation characteristics of saturated silty sands. Arab. J. Sci. Eng. 39, 6055–6067 (2014). doi:10.1007/s13369-014-1238-9

    Article  Google Scholar 

  6. Troncoso, J.H.; Verdugo, R.: Silt content and dynamic behavior of tailing sands. In: Proceedings of the XI International Conference on Soil Mechanics and Foundation Engineering, pp. 1311–1314 (1985)

  7. Vaid, Y.P.: Liquefaction of silty soils. In: Prakash, S., Dakoulas, P. (eds.) Ground Failures under Seismic Conditions, pp. 1–16. Geotechnical special publication no. 44. American Society of Civil Engineers, New York (1994)

  8. Thevanayagam S.: Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech. Geoenviron. Eng. 124(6), 479–490 (1998)

    Article  Google Scholar 

  9. Missoum H., Belkhatir M., Bendani K., Maliki M.: Laboratory investigation into the effects of silty fines on liquefaction susceptibility of Chlef (Algeria) sandy soils. J. Geotech. Geol. Eng. 31(1), 279–296 (2013). doi:10.1007/s10706-012-9590-6

    Article  Google Scholar 

  10. Wang W.S.: Some Findings in Soil Liquefaction. Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing (1979)

    Google Scholar 

  11. Prakash, S.; Puri, V.K.: Recent advances in liquefaction of fine grained soils. In: 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, pp. 1–6 (2010)

  12. Sadrekarimi A.: Influence of fines content on liquefied strength of silty sands. Int. J. Soil Dyn. Earthq. Eng. 55, 108–119 (2013). doi:10.1016/j.soildyn.2013.09.008

    Article  Google Scholar 

  13. Yamamuro J.A., Lade PV.: Steady-state concepts and static liquefaction of silty sands. J. Geotech. Geoenviron. Eng. 124(9), 868–877 (1998). doi:10.1061/(ASCE)1090-0241(1998)124:9(868)

    Article  Google Scholar 

  14. Seed H.B., Idriss I.M., Arango I.: Evaluation of liquefaction potential using field performance data. J. Geotech. Geoenviron. Eng. 109(3), 458–482 (1983). doi:10.1061/(ASCE)0733-9410(1983)109:3(458)

    Article  Google Scholar 

  15. Stark T.D., Mesri G.: Undrained shear strength for liquefied sands for stability analysis. J. Geotech. Eng. 118(9), 1727–1747 (1992)

    Article  Google Scholar 

  16. Olson S.M., Stark T.D.: Liquefied strength ratio from liquefaction flow failure case histories. Can. Geotech. J. 39, 629–647 (2002). doi:10.1139/t02-001

    Article  Google Scholar 

  17. Yamamuro J.A., Kelly M.C.: Monotonic and cyclic liquefaction of very loose sands with high silt content. J. Geotech. Geoenviron. Eng. 127(4), 314–324 (2001). doi:10.1061/(ASCE)1090-0241(2001)127:4(314)

    Article  Google Scholar 

  18. Maheshwari B.K., Patel A.K.: Effects of non-plastic silts on liquefaction potential of Solani sand. Geotech. Geoenviron. Eng. 28(5), 559–566 (2010). doi:10.1007/s10706-010-9310-z

    Article  Google Scholar 

  19. ASTM, D2487-11.: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken (2011). doi:10.1520/D2487-11

  20. Missoum H., Belkhatir M., Bendani K.: Undrained shear strength response under monotonic loading of Chlef (Algeria) sandy soil. Arab. J. Geosci. 6, 615–623 (2013). doi:10.1007/s12517-011-0387-3

    Article  Google Scholar 

  21. Ladd R.S.: Specimen preparation and liquefaction of sands. J. Geotech. Eng. Div. 100(10), 1180–1184 (1974)

    Google Scholar 

  22. Mulilis J.P., Arulanandan K., Mitchell J.K., Chan C.K., Seed H.B.: Effects of sample preparation on sand liquefaction. J. Geotech. Eng. Div. 103(2), 91–108 (1977)

    Google Scholar 

  23. Vaid Y.P., Sivathayalan S., Stedman D.: Influence of specimen-reconstituting method on the undrained response of sand. ASTM Geotech. Test. J. 22(3), 187–195 (1999) .refdoc.fr/Detail notice?idarticle=11381016

    Article  Google Scholar 

  24. ASTM, D4767-02.: Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, vol. 04.08, pp. 1–13. American Society for Testing and Materials, West Conshohocken (2004). doi:10.1520/D4767-02

  25. Poulos S.J.: The steady state of deformation. J. Geotech. Eng. 107(5), 553–562 (1981)

    Google Scholar 

  26. Been K., Jefferies M.G., Hachey J.: The critical state of sands. Géotechnique 41, 365–381 (1991)

    Article  Google Scholar 

  27. Kramer S.L., Wang C.H., Byers M.B.: Experimental measurement of the residual strength of particulate materials. In: Lade, P.V., Yamamuro, J.A. Physics and Mechanics of Soil Liquefaction, pp. 249–259. Balkema, Rotterdam (1999)

    Google Scholar 

  28. Been K., Jefferies M.A.: state parameter for sands. Géotechnique 35, 99–112 (1985). doi:10.1680/geot.1985.35.2.99

    Article  Google Scholar 

  29. Schofield A., Wroth P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  30. Shen, C.K.; Vrymoed, J.L.; Uyeno, C.K.: The effect of fines on liquefaction of sands. In: 9th International Conference on Soil Mechanics and Foundation Engineering, pp. 281–285 (1977)

  31. Troncoso, J.H.; Verdugo, R.: Silt content and dynamic behavior of tailing sands. In: Proceedings of the XI International Conference on Soil Mechanics and Foundation Engineering, pp. 1311–1314 (1985)

  32. Sladen J.A., D’Hollander R.D., Krahn J., Mitchell D.E.: Back analysis of the Nerlerk berm liquefaction slides. Can. Geotech. J. 22, 579–588 (1985)

    Article  Google Scholar 

  33. Koester, J.P.: The influence of fines type and content on cyclic strength. In: Prakash, S., Dakoulas, P. (eds.) Ground Failures Under Seismic Conditions, pp. 17–33. ASCE, New York (1994)

  34. Naeini S.A., Baziar M.H.: Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dyn. Earthq. Eng. 24, 181–187 (2004). doi:10.1016/j.soildyn.2003.11.003

    Article  Google Scholar 

  35. Kokusho, T.; Nagao, Y.; Ito, F.; Fukuyama, T.: Sand liquefaction observed during recent earthquake and basic laboratory studies on aging effect. In: Maugeri, M., Soccodato, C. (eds.) Earthquake Geotechnical Engineering Design, pp. 75–92. Springer, Switzerland (2014). doi:10.1007/978-3-319-03182-8_3

  36. Pitman T.D., Robertson P.K., Sego D.C.: Influence of fines on the collapse of loose sands. Can. Geotech. J. 31(5), 728–739 (1994). doi:10.1139/t94-084

    Article  Google Scholar 

  37. Thevanayagam S., Mohan S.: Intergranular state variables and stress–strain behavior of silty sands. Geotechnique 50(1), 1–23 (2000). doi:10.1680/geot.2000.50.1.1

    Article  Google Scholar 

  38. Bobei D.C., Wanatowski D.: Modified state parameter for characterizing static liquefaction of sand with fines. Can. Geotech. J. 46(3), 281–295 (2009). doi:10.1139/T08-122

    Article  Google Scholar 

  39. Rahman M.M., Lo S.R.: Predicting the onset of static liquefaction of loose sand with fines. J. Geotech. Geoenviron. Eng. 138(8), 1037–1041 (2012). doi:10.1061/(ASCE)GT.1943-5606.0000661

    Article  Google Scholar 

  40. Kramer S.L., Seed H.B.: Initiation of soil liquefaction under static loading conditions. J. Geotech. Geoenviron. Eng. 114(4), 412–430 (1988). doi:10.1061/(ASCE)0733-9410(1988)114:4(412)

    Article  Google Scholar 

  41. Fourie A.B., Tshabalala L.: Initiation of static liquefaction and the role of K 0 consolidation. Can. Geotech. J. 42(3), 892–906 (2005). doi:10.1139/t05-026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Belhouari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhouari, F., Bendani, K., Missoum, H. et al. Undrained Static Response of Loose and Medium Dense Silty Sand of Mostaganem (Northern Algeria). Arab J Sci Eng 40, 1327–1342 (2015). https://doi.org/10.1007/s13369-015-1629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1629-6

Keywords

Navigation