Skip to main content

Advertisement

Log in

Mechanical and Thermal Properties of Recycling Lightweight Pervious Concrete

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents an investigation of the use of recycled lightweight aggregate from waste autoclaved aerated concrete block to make lightweight pervious concrete (LWPC). The effects of fine sand (SA) and fly ash (FA) as additive materials on LWPC properties were also studied. The density, total void ratio, water permeability, compressive strength, splitting tensile strength, flexural strength, thermal conductivity, and surface abrasion of LWPC were tested. The results showed that all LWPCs had low density of 775–900 kg/m3 and low thermal conductivity coefficient of 0.15–0.27 W/m K. The use of SA and FA improved the compressive strength, splitting tensile strength, flexural strength, and abrasion resistance of LWPC, while the total void ratio and water permeability seemed to reduce. The low thermal conductivity and low density of LWPC with reasonable 28-day compressive strength of 1.9–4.1 MPa suggested that it is suitable for use as thermal insulating concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACI Committee 213.: Guide for structural lightweight aggregate concrete (ACI 213R-03), American Concrete Institute, Detroit (2003)

  2. Aguilar A.A., Diaz O.B., Garcia J.I.E.: Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Constr. Build. Mater. 24, 1166–1175 (2010)

    Article  Google Scholar 

  3. Sales A., de Souza F.R., dos Santos W.N., Zimer A.M., doCoutoRosa Almeida F.: Lightweight composites concrete product with water treatment sludge and sawdust: Thermal properties and potential application. Constr. Build. Mater. 24, 1069–1077 (2010)

    Article  Google Scholar 

  4. Kralj D.: Experimental study of recycling lightweight concrete with aggregate containing expanded glass. Process Saf. Environ. Prot. 87, 267–273 (2009)

    Article  Google Scholar 

  5. Fraj A.B., Kismi M., Mounanga P.: Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Constr. Build. Mater. 24, 1069–1077 (2010)

    Article  Google Scholar 

  6. Posi P., Teerachanwit C., Tanutong C., Limkamoltip S., Lertnimoolchai S., Sata V., Chindaprasirt P.: Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Mater. Des. 52, 580–586 (2013)

    Article  Google Scholar 

  7. Alexander Bogas J., de Brito J., Cabaco J.: Long-term behavior of concrete produced with recycled lightweight expanded clay aggregate concrete. Constr. Build. Mater. 65, 470–479 (2014)

    Article  Google Scholar 

  8. ACI Committee 522.: Pervious Concrete (ACI 522R-10), American Concrete Institute, Detroit (2010)

  9. Zaetang Y., Wongsa A., Sata V., Chindaprasirt P.: Use of lightweight aggregates in pervious concrete. Constr. Build. Mater. 48, 585–591 (2013)

    Article  Google Scholar 

  10. Kathirvel P., Saraswathy V., Karthik S.P., Sekar A.S.S.: Strength and durability of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38, 589–598 (2013)

    Article  Google Scholar 

  11. Guneyisi E., Gesoglu M., Mermerdas K.: Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 41, 937–949 (2008)

    Article  Google Scholar 

  12. Sata V., Tangpagasit J., Jaturapitukkul C., Chindaprasirt P.: Effect of W/B ratios on pozzolanic reaction of biomass ashes in Portland cement matrix. Cem. Concr. Compos. 34(1), 94–100 (2012)

    Article  Google Scholar 

  13. TIS 1505: Autoclaved aerated lightweight concrete elements, Thailand Industrial Standard (1998)

  14. Japanese Industrial Standard (JIS) R5201. Physical testing methods for cement (1997)

  15. Hatanaka S., Mishima N., Nakagawa T., Morihana H., Chindaprasirt P.: Finishing methods and compressive strength-void ratio relationships of in-situ porous concrete pavement. Comput. Concr. 10(3), 231–240 (2012)

    Article  Google Scholar 

  16. ASTM, C 1754: Standard test method for density and void content of hardened pervious concrete. Annual book of ASTM standards, American Society for Testing and Materials (2012)

  17. ASTM, C 39/C 39M-01: Standard test method for compressive strength of cylindrical concrete specimens. Annual book of ASTM standards, American Society for Testing and Materials (2003)

  18. ASTM, C 496-96: Standard test method for splitting tensile strength of cylindrical concrete specimens. Annual book of ASTM standards, American Society for Testing and Materials (2003)

  19. ASTM, C 293-02: Standard test method for flexural strength of concrete (Using sample beam with center-point loading). Annual book of ASTM standards, American Society for Testing and Materials (2003)

  20. ASTM, C 944: Standard test method for abrasion resistance of concrete or mortar surfaces by the rotating-cutter method. Annual book of ASTM standards, American Society for Testing and Materials (1999)

  21. Uysal H., Demirboga R., Sahin R., Gul R.: The effect of different cement dosage, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34, 845–848 (2004)

    Article  Google Scholar 

  22. Sengul O., Azizi S., Karaosmanoglu F., Tasdemir M.A.: Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43, 671–676 (2011)

    Article  Google Scholar 

  23. Kim H.K., Jeon J.H., Lee H.K.: Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater. 29, 193–200 (2012)

    Article  Google Scholar 

  24. Neithalath N., Sumanasooriya M.S., Deo O.: Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater. Character 61, 802–813 (2010)

    Article  Google Scholar 

  25. Kevern J.T., Schaefer V.R., Wang K.: Portland cement pervious concrete: A field experience from Sioux City. Open Constr. Build. Technol. J. 2, 82–88 (2008)

    Article  Google Scholar 

  26. Sata V., Wongsa A., Chindaprasirt P.: Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater. 42, 33–39 (2013)

    Article  Google Scholar 

  27. Unal O., Uygunoglu T., Yildiz A.: Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 42, 584–590 (2007)

    Article  Google Scholar 

  28. Tanyildizi H., Coskun A., Somunkiran I.: An experimental investigation of bond and compressive strength of concrete with mineral admixtures at high temperatures. Arab. J. Sci. Eng. 33(2B), 443–449 (2008)

    Google Scholar 

  29. ACI Committee 318.: Building code requirements for structural concrete and commentary (ACI 318R-11). American Concrete Institute, Detroit (2011)

  30. Crouch L.K., Pitt J., Hewitt R.: Aggregate effects on pervious portland cement concrete static modulus of elastic. J. Mater. Civ. Eng. 19(7), 561–568 (2007)

    Article  Google Scholar 

  31. Topcu I.B., Uygunoglu T.: Properties of autoclaved lightweight aggregate concrete. Build. Environ. 42, 4108–4116 (2007)

    Article  Google Scholar 

  32. Jerman M., Keppert M., Vyborny J., Cerny R.: Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 41, 352–359 (2013)

    Article  Google Scholar 

  33. Losiewicz M., Halsey D.P., Dews S.J., Olomaiye P., Harris F.C.: An investigation into the properties of micro-sphere insulating concrete. Constr. Build. Mater. 10(8), 583–588 (1996)

    Article  Google Scholar 

  34. Saygili A., Baykal G.: A new method for improving the thermal insulation properties of fly ash. Energy Build. 43, 3236–3242 (2011)

    Article  Google Scholar 

  35. Wongkeo W., Thongsanitgarn P., Pimraksa K., Chaipanich A.: Compressive strength, flexural strength and thermal conductivity of autoclave concrete block made using bottom ash as cement replacement materials. Mater. Des. 35, 434–439 (2012)

    Article  Google Scholar 

  36. Demirboga R., Gul R.: The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 33(5), 723–727 (2003)

    Article  Google Scholar 

  37. Valore R.C.: Insulating concretes. ACI J. Proc. 53(11), 509–532 (1956)

    Google Scholar 

  38. Atis A.D.: High volume fly ash abrasion resistant concrete. J. Mater. Civ. Eng. 14(3), 274–277 (2002)

    Article  Google Scholar 

  39. Yuksel I., Bilir T.: Usage of industrial by-products to produce plain concrete elements. Constr. Build. Mater. 21(3), 686–694 (2007)

    Article  Google Scholar 

  40. Yuksel I., Bilir T., Ozkan O.: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Build. Environ. 42(7), 2651–2659 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanchai Sata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chindaprasirt, P., Nuaklong, P., Zaetang, Y. et al. Mechanical and Thermal Properties of Recycling Lightweight Pervious Concrete. Arab J Sci Eng 40, 443–450 (2015). https://doi.org/10.1007/s13369-014-1563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1563-z

Keywords

Navigation