Skip to main content
Log in

Dry Sliding Wear Characteristics of SiC and Al2O3 Nanoparticulate Aluminium Matrix Composite Using Taguchi Technique

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the sliding wear behaviour of nanoparticle-filled aluminium matrix nano-composites (AMNCs). Two different nano-reinforcements undertaken for this study are SiC and Al2O3. The percentage reinforcement is also varied from 0.5 to 1.5 wt%. For investigating the wear behaviour, factors such as applied normal load, sliding speed and sliding distance are considered. Also Taguchi design of experimental technique is employed for the study and analysis of sliding wear. Findings showed that nano-SiC particulate-reinforced AMNCs show better wear resistance than nano-Al2O3-reinforced AMNCs. Also regression and artificial neural network are used to develop a model to predict the wear rate of these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orbulov I.N., Ginsztler J., Kun P.: Infiltration characteristics and compressive behaviour of metal matrix syntactic foams. Mater. Sci. Forum 729, 68–73 (2013)

    Article  Google Scholar 

  2. Orbulov, I.N.; Májlinger, K.: Description of the compressive response of metal matrix syntactic foams. Mater. Des. 49, 1–9 (2013)

  3. Orbulov I.N., Májlinger K.: Microstructure of metal—matrix composites reinforced by ceramic microballoons. Mater. Technol. 46, 375–82 (2013)

  4. Orbulov I.N.: Compressive properties of aluminium matrix syntactic foams. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 555, 52–56 (2012)

    Google Scholar 

  5. Wang S., Wang Y., Li C., Chi Q., Fei Z.: The dry sliding wear behavior of interpenetrating titanium trialuminide/aluminium composites. Appl. Compos. Mater. 14, 129–144 (2007)

    Article  Google Scholar 

  6. Messler, Jr.; Robert, W.: Joining composite materials and structures. Mater. Struct. 647–696 (2004)

  7. Kang Y.C., Chan S.L.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminium matrix composites. Mater. Chem. Phys. 85, 438–443 (2004)

    Article  Google Scholar 

  8. Molina-Aldareguia J.M., Reyes E.M.: Metal matrix composites reinforced with nano-size reinforcements. Compos. Sci. Technol. 70, 2227 (2010)

    Article  Google Scholar 

  9. Yingguang L., Jianqiu Z., Tongde S.: Effect of nano-metal particles on the fracture toughness of metal—ceramic composite. Mater. Des. 45, 67–71 (2013)

    Article  Google Scholar 

  10. Sahin Y.: Tribological behaviour of metal matrix and its composite. Mater. Des. 28, 1348–1352 (2007)

    Article  Google Scholar 

  11. Ravindran P., Manisekar K., Narayanasamy P., Selvakumar N., Narayanasamy R.: Application of factorial techniques to study the wear behaviour of Al hybrid composites with graphite addition. Mater. Des. 39, 42–54 (2012)

    Article  Google Scholar 

  12. Yamagushi K., Takakura N., Imatani S.: Compaction and sintering characteristics of composite metal powder. J. Mater. Process. Technol. 63, 346 (1997)

    Google Scholar 

  13. Lee, H.S.; Yeo, J.S.; Hong, S.H.; Yoon, D.J.; Na, K.H.: The fabrication process andmechanical properties of SiCp/Al–Simetalmatrix composites for automobile air-conditioner compressor pistons. J. Mater. Process. Technol. 113, 202–208 (2001)

  14. Manna I., Nandi P., Bandyopadhyay B., Ghoshray K., Ghoshray A.: Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al–Ti–Si composites prepared by mechanical alloying. Acta. Mater. 52, 4133–4142 (2004)

    Article  Google Scholar 

  15. Hassan S.F., Gupta M.: Development of high-performance magnesium nano-composites using solidification processing route. Mater. Sci. Technol. 20, 1383–1388 (2004)

    Article  Google Scholar 

  16. Sankaranarayanan S., Sabat R.K., Jayalakshmi S., Suwas S., Gupta M.: Effect of nano scaleboron carbide particle addition on the microstructural evolution and mechanical response of pure magnesium. Mater. Des. 56, 428–436 (2014)

    Article  Google Scholar 

  17. Hassan S., Gupta M.: Development of high performance magnesium nanocomposite using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A 392, 163–168 (2005)

    Article  Google Scholar 

  18. Tun K., Jayaramanavar P., Nguyen Q., Chan J., Kwok R., Gupta M.: Investigation into tensile and compressive responses of Mg–ZnO composites. Mater. Sci. Technol. 28, 582–588 (2012)

    Article  Google Scholar 

  19. Zhou D.S., Tang J., Qiu F., Wang J.G., Jiang Q.C.: Effects of nano-TiCp on the microstructures and tensile properties of TiCp/Al–Cu composites. Mater. Charact. 94, 80–85 (2014)

    Article  Google Scholar 

  20. Melendez I.M., Neubauer E., Angerer P., Danninger H., Torralba J.M.: Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 71, 1154–1162 (2011)

    Article  Google Scholar 

  21. Liu Y., Han Z., Cong H.: Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite. Wear 268, 976–983 (2010)

    Article  Google Scholar 

  22. Zhang Y.S., Wang K., Han Z., Liu G.: Dry sliding wear behavior of copper with nano-scaled twins. Wear 262, 1463–1470 (2007)

    Article  Google Scholar 

  23. La P.Q., Ma J.Q., Zhu Y.T., Yang J., Lu W.M., Xue Q.J., Valiev R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167–5173 (2005)

    Article  Google Scholar 

  24. Zhang Y.S., Han Z., Wang K., Lu K.: Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260, 942–948 (2006)

    Article  Google Scholar 

  25. Iglesias P., Bermudez M.D., Moscoso W., Rao B.C., Shankar M.R., Chandrasekar S.: Friction and wear of nanostructured metals created by large strain extrusion machining. Wear 263, 636–642 (2007)

    Article  Google Scholar 

  26. Ravindran P., Manisekar K., Vinoth Kumar S., Rathika P.: Investigation of microstructure and mechanical properties of aluminium hybrid nano-composites with the additions of solid lubricant. Mater. Design 51, 448–456 (2013)

    Article  Google Scholar 

  27. Al-Qutub, A.M.: Effect of heat treatment on friction and wear behavior of Al-6061 composite reinforced with 10 % submicron Al2O3 particles. Arabian J. Sci. Eng. 34(1B) (2009)

  28. Al-Dheylan, K.; Hafeez, S.: Tensile failure micromechanisms of 6061 aluminum reinforced with submicron Al2O3 metal—matrix composites. Arabian J. Sci. Eng. 31(2C) (2006)

  29. Aleksendric D.: Neural network prediction of brake friction materials wear. Wear 268, 117–125 (2010)

    Article  Google Scholar 

  30. Tsao, C.C.; Hocheng, H.: Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J. Mater. Process. Technol. 203, 342–348 (2008)

  31. Bernardos P.G., Vosniakos G.C.: Prediction of surface roughness in CNC face milling using neural network and Taguchi’s design of experiments. Robot. Comput. Integr. Manuf. 18, 343–354 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Kumar Ekka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekka, K.K., Chauhan, S.R. & Varun Dry Sliding Wear Characteristics of SiC and Al2O3 Nanoparticulate Aluminium Matrix Composite Using Taguchi Technique. Arab J Sci Eng 40, 571–581 (2015). https://doi.org/10.1007/s13369-014-1528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1528-2

Keywords

Navigation