Skip to main content
Log in

Single-Gene Versus Double-Gene Tree Analyses in Molecular Classification of Saudi Venomous Snakes

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Aiming to use DNA sequence for proper identification of venomous snakes in Saudi Arabia, mitochondrial 12S rRNA gene sequences of Bitis arietans, Cerastes cerastes, C. gasperettii, and Echis coloratus were investigated. Concatenated analysis of 16S and 12S rRNA gene sequences (as mosaic) was also performed to validate the usefulness of using more than one gene marker in molecular taxonomy of venomous snakes. DNA extracted from whole blood samples and 12S rRNA was amplified using PCR. Sequences submitted to GenBank were analyzed for similarity using BLAST and aligned using Clustal X followed by manual editing with BioEdit software. Phylogenetic analysis was generated using PAUP version 4, and the evolutionary distance among different groups was calculated using MEGA5 software for both 12S and 16S rRNA genes. Contrary to the morphological classification, phylogenetic analysis revealed that the collected isolates formed three different statistically supported clusters (B. arietans, C. cerastes, and E. coloratus). Although the combined analysis of 16S and 12S rRNA sequences improved the signal, the C. cerastes and C. gasperettii intermixing have not been resolved. Both single and combined genetic distance analyses showed that Echis is more distant from Cerastes than from Bitis. Further studies are mandatory to evaluate other gene markers in molecular classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malik G.M: Snake bites in adults from the Asir region of southern Saudi Arabia. Am. J. Trop. Med. Hyg. 52, 314–317 (1995)

    Google Scholar 

  2. Al Harbi N: Epidemiological and clinical differences of snake bites among children and adults in southwestern Saudi Arabia. J. Accid. Emerg. Med. 16, 428–430 (1999)

    Article  Google Scholar 

  3. Ismail M., Al-Ahaidib M.S., Abdoon N., Abd-Elsalam M.A: Preparation of a novel antivenom against Atractaspis and Walterinnesia venoms. Toxicon 49, 8–18 (2007)

    Article  Google Scholar 

  4. Cruz L.S., Vargas R., Lopes A.A: Snakebite envenomation and death in the developing world. Ethn. Dis. 19(1 Suppl 1), 42–46 (2009)

    Google Scholar 

  5. Sindaco, R.; Venchi, A.; Grieco, C.: The reptiles of the Western Palearctic. 2. Annotated checklist and distributional Atlas of the snakes of Europe, North Africa, Middle East and Central Asia. Edizioni Belvedere, Latina (Italy), 543 pp. (2012)

  6. Sharawy S.M., Alshammari A.M: Checklist of poisonous plants and animals in Aja mountain, Ha’il region, Saudi Arabia. Aust. J. Basic. Appl. Sci. 3(3), 2217–2225 (2009)

    Google Scholar 

  7. Adukauskienė D., Varanauskienė E., Adukauskaitė A.: Venomous snakebites. Medicina (Kaunas) 47(8), 461–467 (2011)

    Google Scholar 

  8. Egan D.: Snakes of Arabia, pp. 208. Motivate Publishing, Dubai (2007)

    Google Scholar 

  9. Barlow A., Pook C.E., Harrison R.A., Wüster W.: Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. Biol. Sci. 276(1666), 2443–2449 (2009)

    Article  Google Scholar 

  10. Richards D.P., Barlow A., Wüster W.: Venom lethality and diet: differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis). Toxicon 59(1), 110–116 (2012)

    Article  Google Scholar 

  11. Heise P.J., Maxson L.R., Dowling H.G., Hedge S.B.: Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol. Biol. Evol. 12, 259–265 (1995)

    Google Scholar 

  12. Lenk P., Kalyabina S., Wink M., Joger U.: Evolutionary relationships among the true vipers (Reptilia:Viperidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 19, 94–104 (2001)

    Article  Google Scholar 

  13. Douglas D.A., Gower D.J.: Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution. BMC Genomics 11, 14 (2010)

    Article  Google Scholar 

  14. Vidal N., Dewynter M., Gower DJ.: Dissecting the major American snake radiation: a molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). C. R. Biol. 333(1), 48–55 (2010)

    Article  Google Scholar 

  15. Pook C.E., Joger U., Stümpel N., Wüster W.: When continents collide: phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata:Serpentes:Viperidae). Mol. Phylogenet. Evol. 53, 792–807 (2009)

    Article  Google Scholar 

  16. Alshammari A.M.: Molecular phylogeny of viperidae family from different provinces in Saudi Arabia. Int. J. Biol. 3(4), 56–63 (2011)

    Article  Google Scholar 

  17. Werner, Y.L.; Sivan, N.; Kushnir, V.; Motro, U: A statistical approach to variation in Cerastes (Ophidia:Viperidae) with the description of two endemic subspecies. In: Joger, U. (ed.) Phylogeny and systematics of the Viperidae. Kaupia 8, pp. 83–97 (1999)

  18. Zuhair S.A., Disi A.M.: Systematics, distribution and ecology of the snakes of Jordan. Vertebr. Zool. 61(2), 179–266 (2011)

    Google Scholar 

  19. New York Academy of Sciences.: Interdisciplinary Principles and guidelines for the use of animals in research, testing, and education paperback (1988)

  20. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  21. Altschul S.F., Gertz E.M., Agarwala R., Schäffer A.A., Yu Y.K.: PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res. 37, 815–824 (2009)

    Article  Google Scholar 

  22. Thompson J., Higgins D., Gibson T., Clustal W.: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  23. Hall T.A.: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999)

    Google Scholar 

  24. Posada D., Buckley T.R.: Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst. Biol. 53(5), 793–808 (2004)

    Article  Google Scholar 

  25. Guindon S., Gascuel O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003)

    Article  Google Scholar 

  26. Wilgenbusch, J.C.; Swofford, D.: Inferring evolutionary trees with PAUP*. Curr. Protoc. Bioinform. Chapter 6: Unit 6.4 (2003)

  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10), 2731–2739 (2011)

    Article  Google Scholar 

  28. Schmidt H.A., Strimmer K., Vingron M., von Haeseler A.: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002)

    Article  Google Scholar 

  29. Strimmer K., von Haeseler A.: Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94(13), 6815–6819 (1997)

    Article  MATH  Google Scholar 

  30. Spawls S., Branch B.: The Dangerous Snakes of Africa Ralph Curtis Books, pp. 192. Oriental Press, Dubai (1995)

    Google Scholar 

  31. Gasperetti, J.: Snakes of Arabia. Fauna Saudi Arabia 9, 169–450 (1988). Basle & Jeddah

  32. Busais, S.M.: Taxonomic and zoogeographical studies on the snakes of Yemen. Department of Biology, Sana’a University. Yemen. M.Sc. Thesis, 256 pp. (2003)

  33. Sant’Anna S.S., Grego K.F., Lorigados C.A., Fonseca-Pinto A.C., Fernandes W., Sá-Rocha L.C., Catáo-Dias J.L.: Malformations in neotropical viperids: qualitative and quantitative analysis. J. Comp. Pathol. 149(4), 503–508 (2013)

    Article  Google Scholar 

  34. Pyron R.A., Burbrink F.T., Wiens J.J.: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. B.M.C. Evol. Biol. 13(1), 93 (2013)

    Article  Google Scholar 

  35. Degnan J.H., Rosenberg N.A: Discordance of species trees with their most 461 likely gene trees. PLoS. Genet. 2, 762–768 (2006)

    Article  Google Scholar 

  36. Degnan J.H., Rosenberg N.A.: Gene tree discordance, phylogenetic inference 463 and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009)

    Article  Google Scholar 

  37. Joger U., Courage K.: Are Palaearctic rattlesnakes (Echis and Cerastes) monophyletic?. Kaupia 8, 65–81 (1999)

    Google Scholar 

  38. Wüster W., Peppin L., Pook C.E., Walker D.E.: A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol. Phylogenet. Evol. 49(2), 445–459 (2008)

    Article  Google Scholar 

  39. Driskell A.C., Ane C., Burleigh J.G., McMahon M.M., O’Meara B.C., Sanderson M.J.: Prospects for building the tree of life from large sequence databases. Science 306, 1172–1174 (2004)

    Article  Google Scholar 

  40. De Queiroz A., Gatesy J.: The supermatrix approach to systematics. Trends Ecol. Evol. 22, 34–41 (2007)

    Article  Google Scholar 

  41. Kornilios P., Giokas S., Lymberakis P., Sindaco R.: Phylogenetic position, origin and biogeography of Palearctic and Socotran blind-snakes (Serpentes: Typhlopidae). Mol. Phylogenet. Evol. 68(1), 35–41 (2013)

    Article  Google Scholar 

  42. Gutiérrez J.M., Lomonte B., León G., Alape-Girón A., Flores-Díaz M., Sanz L., Angulo Y., Calvete J.J.: Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J. Proteomics 72(2), 165–182 (2009)

    Article  Google Scholar 

  43. Günther A.: On reptiles from Midian collected by Major Burton. Proc. Zool. Soc. Lond. 1878, 977–978 (1878)

    Google Scholar 

  44. Merrem, B.: Versuch eines Systems der Amphibien I (Tentamen Systematis Amphibiorum). J. C. Kriegeri, Marburg, 191 pp. (1820)

  45. Linnaeus, C.: Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiæ. 10th Edition, 824 pp (1758)

  46. Leviton A.E., Anderson S.C.: Survey of the reptiles of the Sheikdom of Abu Dhabi, Arabian Peninsula. Part II. Systematic account of the collection of reptiles made in the Sheikdom of Abu Daby by John Gasperetti. Proc. Cal. Acad. Sci. 4(39), 157–192 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman El-Abd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshammari, A.M., El-Abd, E., Ciccozzi, M. et al. Single-Gene Versus Double-Gene Tree Analyses in Molecular Classification of Saudi Venomous Snakes. Arab J Sci Eng 40, 37–49 (2015). https://doi.org/10.1007/s13369-014-1491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1491-y

Keywords

Navigation