Skip to main content
Log in

Exploration of Microbial Diversity of Taptapani (India) Hot Spring Through Molecular Phylogenetic Analysis

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The nature of microbial communities and their relation to enzyme activities in the Taptapani hot spring Odisha, India, is a neglected area of investigation. To address this, the microbial diversity, enzyme activities and the physicochemical factors of the hot spring water were studied. Organisms were identified using the 16S rDNA, 28S rDNA and 18S region of rDNA for bacteria, fungi and algae, respectively, after amplification by the polymerase chain reaction. Phylogenetic analysis of the sequenced gel electrophoresis bands revealed a great diversity of microorganisms. Based on morphology, nine groups of bacteria, three groups of fungi and four groups of algae were dominant during all seasons. The growth behavior of the selected isolates was studied at different elevated temperatures which revealed that all ten isolates (six bacteria, three fungi and one alga) were able to grow in the temperature range of 50–80°C and at pH 4–9. Maximum temperature and pH for the amylase activity were found to be 80 and 9°C, respectively, while an optimum amylase activity was observed at 60°C and pH 9. Considerable activity was observed at both acidic and alkaline pH (4.0–10.0), suggesting wide technical applications for these enzymes and indicating that these enzymes are novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brock T.D., Hudson F.: Thermus aquaticus gen. n. and sp. n., a non sporulating extreme thermophile. J. Bacteriol. 98(1), 289 (1969)

    Google Scholar 

  2. Barns S.M., Fundyga R.E., Jeffries M.W., Pace N.R.: Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91, 1609–1613 (1994)

    Article  Google Scholar 

  3. Meyer-Dombard D.R., Shock E.L., Amend J.P.: Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3, 211–227 (2005)

    Article  Google Scholar 

  4. Hall J.R., Mitchell K.R., Jackson-Weaver O., Kooser A.S., Cron B.R., Crossey L.J., Takacs-Vesbach C.D.: Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl. Environ. Microbiol. 74, 4910–4922 (2008)

    Article  Google Scholar 

  5. Mitchell, K.R.: Controls on Microbial Community Structure in Thermal Environments: Exploring Bacterial Diversity and the Relative Influence of Geochemistry and Geography. Dissertation, University of New Mexico. http://hdl.handle.net/1928/9315 (2009)

  6. Vick T.J., Dodsworth J.A., Costa K.C., Shock E.L., Hedlund B.P.: Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8, 140–154 (2010)

    Article  Google Scholar 

  7. Bonch-Osmolovskaya E.A., Miroshnichenko M.L., Slobodkin A.I., Sokolova T.G., Karpov G.A., Kostrikina N.A., Zavarzina D.G., Prokof’eva M.I., Rusanov I.I., Pimenov N.V.: Biodiversity of anaerobic lithotrophic prokaryotes in terrestrial hot springs of Kamchatka. Microbiology 68, 343–351 (1999)

    Google Scholar 

  8. Reigstad L.J., Jorgensen S.L., Schleper C.: Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J. 4, 346–356 (2009)

    Article  Google Scholar 

  9. Aguilera A., Souza-Egipsy V., Gonzalez-Toril E., Rendueles O., Amils R.: Eukaryotic microbial diversity of phototrophic microbial mats in two Icelandic geothermal hot springs. Int. Microbiol. 13, 21–32 (2010)

    Google Scholar 

  10. Kumar B., Trivedi P., Mishra A.K., Pandey A., Palni L.M.S.: Microbial diversity of soil from two hot springs in Uttaranchal Himalaya. Microbiol. Res. 159, 141–146 (2004)

    Article  Google Scholar 

  11. Song Z., Jiang H., Zhi X., Zhang C., Dong H., Li W.: Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol. J. 26, 256–263 (2009)

    Article  Google Scholar 

  12. Jiang H., Huang Q., Dong H., Wang P., Wang F., Li W., Zhang C.: RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl. Environ. Microbiol. 76, 4538–4541 (2010)

    Article  Google Scholar 

  13. Aditiawati P., Yohandini H., Madayanti F., Akhmaloka M.: Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of kamojang area, west Java-Indonesia. Open Microbiol J. 3, 58–66 (2009)

    Article  Google Scholar 

  14. Sayeh R., Birrien J.L., Alain K., Barbier G., Hamdi M., Prieur D.: Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 14, 501–514 (2010)

    Article  Google Scholar 

  15. Purcel I.D., Sompong U., Lau C.Y., Barraclough T.G., Peerapornpisal Y., Pointing S.B.: The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol. Ecol. 60(3), 456–466 (2007)

    Article  Google Scholar 

  16. Sen S.K., Mohapatra S.K., Satpathy S., Rao G.T.V.: Characterization of hot water spring source isolated clones of bacteria and their industrial applicability. Int. J. Chem. Res. 2, 01–07 (2010)

    Google Scholar 

  17. Majumdar R.K., Majumdar N., Mukherjee A.L.: Geoelectric investigations in Bakreswar geothermal area, West Bengal, India. J. Appl. Geophys. 45, 187–202 (2000)

    Article  Google Scholar 

  18. Nguyen Q.D., Rezessy-Szabo J.M., Claeyssens M., Stals I.: A purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC. Enzyme Microb. Technol. 34626(31), 345–352 (2002)

    Article  Google Scholar 

  19. Ashwini K., Kumar G., Karthik L.: Optimization, production and partial purification of extracellular α-amylase from Bacillus sp. Marini 3(1), 33–42 (2011)

    Google Scholar 

  20. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971)

    Google Scholar 

  21. Nandy, P.; Thakur, A.R.; Ray Chaudhuri, S.: Characterization of bacterial strains isolated through microbial profiling of urine samples. Online J. Biol. Sci. 7, 44–51. http://www.scipub.org/fulltext/ojbs/ojbs7144-51.pdf (2007)

  22. Ray Chaudhuri S., Thakur A.R.: Microbial DNA extraction from sample of varied origin. Curr. Sci. 12, 1697–1700 (2006)

    Google Scholar 

  23. Cowan D.A.: Industrial enzymes. In: Moses, V., Capes, R.E. (eds.) Biotechnology: The Science and the Business, pp. 311–340. Harwood Academic Publishers, London (1991)

    Google Scholar 

  24. Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  25. Clarke K.R., Warwick R.M.: Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. PRIMER-E, Plymouth (2001)

    Google Scholar 

  26. Handelsman J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68(4), 669–685 (2004)

    Article  Google Scholar 

  27. Skirnisdottir S., Hreggvidsson G.O., Hjorleifsdottir S., Marteinsson V.T., Petursdottir S.K., Holst O., Kristjansson J.K.: Influence of sulphide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66(7), 2835–2841 (2000)

    Article  Google Scholar 

  28. Bel’kova N.L., Parfenova V.V., Susluva M.Y., Ahn T.S., Tazaki K.: Biodiversity and activity of the microbial community in the Kotelnikovsky hot springs (Lake Baikal). Biol. Bull. 2(16), 549–555 (2005)

    Article  Google Scholar 

  29. Souza A.N., Martins M.L.L.: Isolation, properties and kinetics of growth of a thermophilic Bacillus. Braz. J. Microbiol. 32(4), 1517–8382 (2001)

    Article  Google Scholar 

  30. Angelov A., Liebl W.: Insight to extreme thermoacidophily based on genome analysis of Pricrophilus torridus and other thermoacidophilic archaea. J. Biotechnol. 126, 3–10 (2006)

    Article  Google Scholar 

  31. Pegler D.N.: The Larger Fungi of Borneo. Natural History Publications, Kota Kinabalu (1997)

    Google Scholar 

  32. Corner E.J.H.: Ad-Polyporaceaes VI. Beihefte Nova Hedwigia 97, 197 (1989)

    Google Scholar 

  33. Blanc M., Marilley L., Beffa T., Aragno M.: Rapid identification of heterotrophic, thermophilic, spore-forming bacteria isolated from hot composts. Int. J. Syst. Bacteriol. 47(4), 1246–1248 (1997)

    Article  Google Scholar 

  34. Corner E.J.H.: Ad-Polyporaceaes I. Amauroderma and Ganoderma. Beihefte Nova Hedwigia 75, 182 (1983)

    Google Scholar 

  35. Ellaiah P., Adinarayana K., Bhavani Y., Padmaja P., Srinivasulu B.: Optimization of process parameters for glucoamylase production under solid state fermentation by newly isolated Aspergillus species. Process Biochem. 38, 615–620 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Raut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S.K., Raut, S., Satpathy, S. et al. Exploration of Microbial Diversity of Taptapani (India) Hot Spring Through Molecular Phylogenetic Analysis. Arab J Sci Eng 40, 51–61 (2015). https://doi.org/10.1007/s13369-014-1487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1487-7

Keywords

Navigation