Skip to main content
Log in

Effect of Rice Husk Ash on the Thaumasite Form of Sulfate Attack of Cement-Based Materials

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The influence of rice husk ash (RHA) on the thaumasite formation of cement pastes containing limestone powder was investigated. The specimens which were cured in 2 % MgSO4 solution were prepared with different ratios of coarse rice husk ash (CRHA) and fine rice husk ash (FRHA) to cement. The visual change of mortars was inspected monthly. Compressive strength, length and mass developments were examined as functions of time. The products of sulfate attack were examined by X-ray diffraction, Fourier transform infrared spectroscopy and Laser-Raman spectroscopy. The results showed that the degree of deterioration was retarded when cement was partially replaced by RHA. The use of FRHA showed better performance than those of the coarser ones. No obvious degeneration was observed in the mortar contains 20 % FRHA after 12 months of immersing in the MgSO4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, L.: The thaumasite form of sulfate attack: risks, diagnosis, remedial works and guidance on new construction. Report of the Thaumasite Expert Group. Department of the Environment, Transport and the Regions (1999)

  2. Irassar E.: Sulfate attack on cementitious materials containing limestone filler—a review. Cem. Concr. Res. 39(3), 241–254 (2009)

    Article  Google Scholar 

  3. Ma B. et al.: Thaumasite formation in a tunnel of Bapanxia Dam in Western China. Cem. Concr. Res. 36(4), 716–722 (2006)

    Article  Google Scholar 

  4. Skaropoulou A., Kakali G., Tsivilis S.: A study on thaumasite form of sulfate attack (TSA) using XRD, TG and SEM. J. Thermal Anal. Calorim. 84(1), 135–139 (2006)

    Article  Google Scholar 

  5. Hartshorn S., Sharp J., Swamy R.: Thaumasite formation in Portland-limestone cement pastes. Cem. Concr. Res. 29(8), 1331–1340 (1999)

    Article  Google Scholar 

  6. Gaze M., Crammond N.: The formation of thaumasite in a cement: lime: sand mortar exposed to cold magnesium and potassium sulfate solutions. Cem. Concr. Compos. 22(3), 209–222 (2000)

    Article  Google Scholar 

  7. Hartshorn S., Sharp J., Swamy R.: The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cem. Concr. Compos. 24(3), 351–359 (2002)

    Article  Google Scholar 

  8. Barker A., Hobbs D.: Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5 C. Cem. Concr. Compos. 21(2), 129–137 (1999)

    Article  Google Scholar 

  9. Bellmann F., Stark J.: Prevention of thaumasite formation in concrete exposed to sulphate attack. Cem. Concr. Res. 37(8), 1215–1222 (2007)

    Article  Google Scholar 

  10. Smallwood I., Wild S., Morgan E.: The resistance of metakaolin (MK)–Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)—Programme of research and preliminary results. Cem. Concr. Compos. 25(8), 931–938 (2003)

    Article  Google Scholar 

  11. Tsivilis S. et al.: Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar. Cem. Concr. Compos. 25(8), 969–976 (2003)

    Article  Google Scholar 

  12. Skaropoulou A., Kakali G., Tsivilis S.: Thaumasite form of sulfate attack in limestone cement concrete: the effect of cement composition, sand type and exposure temperature. Constr. Build. Mater. 36, 527–533 (2012)

    Article  Google Scholar 

  13. Kakali G. et al.: Parameters affecting thaumasite formation in limestone cement mortar. Cem. Concr. Compos. 25(8), 977–981 (2003)

    Article  Google Scholar 

  14. Baghabra O.S., Al-Amoudi M.M., Saadi M.M.: Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements. ACI Mater. J. 92(1), 15–24 (1995)

    Google Scholar 

  15. Veiga K., Gastaldini A.: Sulfate attack on a white Portland cement with activated slag. Constr. Build. Mater. 34, 494–503 (2012)

    Article  Google Scholar 

  16. Sousa Coutinho J.: The combined benefits of CPF and RHA in improving the durability of concrete structures. Cem. Concr. Compos. 25(1), 51–59 (2003)

    Article  Google Scholar 

  17. Saraswathy V., Song H.-W.: Corrosion performance of rice husk ash blended concrete. Constr. Build. Mater. 21(8), 1779–1784 (2007)

    Article  Google Scholar 

  18. Ramadhansyah P. et al.: Properties of concrete containing rice husk ash under sodium chloride subjected to wetting and drying. Proc. Eng. 50, 305–313 (2012)

    Article  Google Scholar 

  19. Kathirvel P. et al.: Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38(3), 589–598 (2013)

    Article  Google Scholar 

  20. Ma B. et al.: Microscopic structure and growth mechanism of the corrosion products including thaumasite. J. Chin. Ceram. soc. 34(12), 1503–1507 (2006)

    Google Scholar 

  21. Bensted J., Varma S.P.: Studies of thaumasite—part II. Silic. Ind. 39(1), 11–19 (1974)

    Google Scholar 

  22. Hughes T.L. et al.: Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Based Mater. 2(3), 91–104 (1995)

    Article  Google Scholar 

  23. Sahu S., Exline D.L., Nelson M.P.: Identification of thaumasite in concrete by Raman chemical imaging. Cem. Concr. Compos. 24(3), 347–350 (2002)

    Article  Google Scholar 

  24. Mehta P.K.: Durability of concrete in marine environment—a review. ACI Spec. Publ. 65, 1–20 (1980)

    Google Scholar 

  25. Roy, D.: Hydration, structure, and properties of blast furnace slag cements, mortars, and concrete. ACI J. Proc. (1982)

  26. Mehta, P.K.; Monteiro, P.J.: Concrete: Microstructure, Properties, and Materials, vol. 3, pp. 265–268. McGraw-Hill, New York (2006)

  27. Bakharev T., Sanjayan J., Cheng Y.-B.: Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 32(2), 211–216 (2002)

    Article  Google Scholar 

  28. Giaccio G., de Sensale G.R., Zerbino R.: Failure mechanism of normal and high-strength concrete with rice-husk ash. Cem. Concr. Compos. 29(7), 566–574 (2007)

    Article  Google Scholar 

  29. Köhler S., Heinz D., Urbonas L.: Effect of ettringite on thaumasite formation. Cem. Concr. Res. 36(4), 697–706 (2006)

    Article  Google Scholar 

  30. Vuk T., Gabrovšek R., Kaučič V.: The influence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold MgSO4 solution. Cem. Concr. Res. 32(6), 943–948 (2002)

    Article  Google Scholar 

  31. Nazari A., Bagheri A., Riahi S.: Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A 528(24), 7395–7401 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Wang, Y. & Fu, H. Effect of Rice Husk Ash on the Thaumasite Form of Sulfate Attack of Cement-Based Materials. Arab J Sci Eng 39, 8517–8524 (2014). https://doi.org/10.1007/s13369-014-1414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1414-y

Keywords

Navigation