Skip to main content
Log in

Collocation Method for Elastoplastic Analysis of a Pressurized Functionally Graded Tube

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An approach, the radial basis function (RBF) collocation method, is used to obtain numerical solution of both elastic and elastoplastic problem of a pressurized functionally graded tube. RBF is a meshless technique that does not require discretization into elements as is usually done in the finite element method. The implementation of the scheme is achieved with the aid of MATHEMATICA commercial software. The use of the RBF eliminates the need for the hypergeometric function, which has the disadvantage of converging slowly in addition to its complexity. Numerical example for utilizing this scheme is used to show its efficiency and reliability. Excellent agreement with the available literature analytical result is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahamood, R. M.; Akinlabi, E.T.; Shukla, M.; Pityana, S.: Functionally graded material: An overview. Proceedings of the World Congress on Engineering (2012), vol. III, London, UK, July 4–6, 2012

  2. Alashti R.A., Tarahhomi M.H.: Thermo-elastic analysis of functionally graded toroidal shells. Arab. J. Sci. Eng. 39, 2127–2142 (2014)

    Article  MathSciNet  Google Scholar 

  3. Kursun A., Topcu M.: Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load. Arab. J. Sci. Eng. 38, 3531–3549 (2013)

    Article  Google Scholar 

  4. Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009)

    Book  Google Scholar 

  5. Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs Y., Calo V.M., Cottrell J.A., Evans J.A., Hughes T.J.R., Lipton S., Scott M.A., Sederberg T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nguyen-Thanh N., Kiendl J., Nguyen-Xuan H., Wuchner R., Bletzinger K.U., Bazilevs Y., Rabczuk T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011)

    Article  MATH  Google Scholar 

  8. Nguyen V.P., Nguyen-Xuan H.: High-order B-splines based finite elements for delamination analysis of laminated composites. Composite Structures 102, 261–275 (2013)

    Article  Google Scholar 

  9. Thai C.H., Ferreira A.J.M., Carrera E., Nguyen-Xuan H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013)

    Article  Google Scholar 

  10. Valizadeh N., Natarajan S., Gonzalez-Estrada O.A., Rabczuk T., Bui T.Q., Bordas S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)

    Article  Google Scholar 

  11. Tran L.V., Ferreira A.J.M., Nguyen-Xuan H.: Isogeometric analysis of functionally graded plates using higher-order shear deformation theory. Compos. B 51, 368–383 (2013)

    Article  Google Scholar 

  12. Tran L.V., Thai C.H., Nguyen-Xuan H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem Anal. Des. 73, 65–76 (2013)

    Article  Google Scholar 

  13. Hassani B., Taheri A.H., Moghaddam N.Z.: An improved isogeometrical analysis approach to functionally graded plane elasticity problems. Appl. Math. Model. 37, 9242–9268 (2013)

    Article  MathSciNet  Google Scholar 

  14. Eraslan A.N., Akis T.: Elastoplastic response of a long functionally graded tube subjected to internal pressure. Turk. J. Eng. Environ. Sci. 29, 361–368 (2005)

    Google Scholar 

  15. Chakraborty A., Gopalakrishnan S., Reddy J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003)

    Article  MATH  Google Scholar 

  16. Giunta, G.; Crisafulli, D.; Belouettar, S.; Carrera, E.: A thermomechanical analysis of functionally graded beams via hierarchical modeling. Compos. Struct. 95, 676–690 (2013)

  17. Sburlati R., Bardella L.: Three-dimensional elastic solutions for functionally graded circular plates. Eur. J. Mech. A Solids 30, 219–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marin L., Lesnic D.: The method of fundamental solutions for nonlinear functionally graded materials. Int. J. Solids Struct. 44, 6878–6890 (2007)

    Article  MATH  Google Scholar 

  19. Wen P.H., Aliabadi M.H.: Analysis of functionally graded plates by meshless method: a pure analytical formulation. Eng. Anal. Bound. Elem. 36, 639–650 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zhang C., Cui M., Wang J., Gao X.W., Sladek J., Sladek V.: 3D crack analysis in functionally graded materials. Eng. Fract. Mech. 78, 585–604 (2011)

    Article  Google Scholar 

  21. Arghavan S., Hematiyan M.R.: Torsion of functionally graded hollow tubes. Eur. J. Mech. A Solids. 28, 551–559 (2009)

    Article  MATH  Google Scholar 

  22. Gao, X.W.; Zhang, C.; Sladek, J.; Sladek, V.: A Meshless BEM for 2-D Stress Analysis in Linear Elastic FGMs. Third International Workshop on Meshfree Methods for Partial Differential Equations, Bonn, Universität Bonn, September 12–15, 2005, p. 21

  23. Gao X.W., Zhang C., Sladek J., Sladek V.: Fracture analysis of functionally graded materials by BEM. Compos. Sci. Technol. 68, 1209–1215 (2008)

    Article  Google Scholar 

  24. Lei Z., Zheng Z.: Exact solution for axisymmetric bending of functionally graded circular plate. Tsinghua Sci. Technol. 14, 64–68 (2009)

    Article  Google Scholar 

  25. Sburlati R.: An axisymmetric elastic analysis for circular sandwich panels with functionally graded cores. Compos. B 43, 1039–1044 (2012)

    Article  Google Scholar 

  26. Sundararajan N., Prakash T., Ganapathi M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42, 152–168 (2005)

    Article  Google Scholar 

  27. Natarajan S., Kaleeswaran K., Manickam G.: Functionally graded material panel flutter by cell-based smoothed finite elements. J. Coupled Syst. Multiscale Dyn. 1(2), 205–215 (2013)

    Article  Google Scholar 

  28. Prakash T., Ganapathi M.: Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. B 37, 642–649 (2006)

    Article  Google Scholar 

  29. Najafizadeh M.M., Heydari H.R.: Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. Eur. J. Mech. A Solids 23, 1085–1100 (2004)

    Article  MATH  Google Scholar 

  30. Sburlati R., Bardella L.: Three-dimensional elastic solutions for functionally graded circular plates. Eur. J. Mech. A Solids 30, 219–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gunes R., Aydin M., Apalak M.K., Reddy J.N.: The elasto-plastic impact analysis of functionally graded circular plates under low-velocities. Compos. Struct. 93, 860–869 (2011)

    Article  Google Scholar 

  32. Sofiyev A.H., Kuruoglu N.: Effect of functionally graded interlayer on the non-linear stability of conical shells in elastic medium. Compos. Struct. 99, 296–308 (2013)

    Article  Google Scholar 

  33. Thai H.-T., Kim S.-E.: A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct. 99, 172–180 (2013)

    Article  Google Scholar 

  34. Thai H.-T., Vo T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37, 3269–3281 (2013)

    Article  MathSciNet  Google Scholar 

  35. Oktem A.S., Mantari J.L., Soares C.G.: Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory. Eur. J. Mech. A Solids 36, 163–172 (2012)

    Article  Google Scholar 

  36. Liu G.R.: MeshFree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  37. Kansa E.J.: Multi-quadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kansa E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to hyperbolic, parabolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kansa E.J., Carlson R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24, 99–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang H., Qin Q.-H.: Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng. Anal. Bound. Elem. 32, 704–712 (2008)

    Article  MATH  Google Scholar 

  41. Xiang S., Kang G.-w.: A nth-order shear deformation theory for the bending analysis on the functionally graded plates. Eur. J. Mech. A Solids 37, 336–343 (2013)

    Article  MathSciNet  Google Scholar 

  42. Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S.: Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos. Struct. 66, 287–293 (2004)

    Article  Google Scholar 

  43. Ferreira A.J.M.: Free vibration analysis of Timoshenko beams and Mindlin plates by Radial Basis Functions. Int. J. Comput. Methods 2, 15–31 (2005)

    Article  MATH  Google Scholar 

  44. Zhou F., Zhang J., Sheng X., Li G.: Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng. Anal. Bound. Elem. 35, 244–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu G.R., Gu Y.T., Dai K.Y.: Assessment and applications of point interpolation methods for computational mechanics. Int. J. Numer. Meth. Eng. 59, 1373–1379 (2004)

    Article  MATH  Google Scholar 

  46. Liu G.R., Gu Y.T.: A meshfree method: meshfree weak–strong (MWS) form method, for 2-D solids. Comput. Mech. 33, 2–14 (2003)

    Article  MATH  Google Scholar 

  47. Liu G.R., Zhang G.Y., Gu Y.T., Wang Y.Y.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. 36, 2–14 (2005)

    MathSciNet  Google Scholar 

  48. Liu G.R., Li Y., Dai K.Y., Luan M.T., Xue W.: A linearly conforming radial point interpolation method for solid mechanics problems. Int. J. Comput. Methods 3, 401–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu G.R., Zhang G.Y., Wang Y.Y., Zhong Z.H., Li G.Y., Han X.: A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44, 3840–3860 (2007)

    Article  MATH  Google Scholar 

  50. Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J. Sound Vib. 300, 1048–1070 (2007)

    Article  Google Scholar 

  51. Liu Q., Gu Y.T., Zhuang P., Liu F., Nie Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiang S., Kang G.-w.: Static analysis of functionally graded plates by the various shear deformation theory. Compos. Struct. 99, 224–230 (2013)

    Article  Google Scholar 

  53. Sadeghirad A., Kani I.M., Rahimian M., Astaneh A.V.: Meshfree local integration on line method (MLILM) for linear elasticity. Arab. J. Sci. Eng. 33(2B), 411–434 (2008)

    Google Scholar 

  54. Sadeghirad A., Kani I.M., Noorzad A., Rahimian M., Astaneh A.V.: Elastic fracture analyses using an enriched collocation method. Arab. J. Sci. Eng. 35(1B), 165–181 (2010)

    Google Scholar 

  55. Salari-Rad H., Rahimi-Dizadji M., Rahimi-Pour S., Delforouzi M.: Meshless EFG simulation of linear elastic fracture propagation under various loadings. Arab. J. Sci. Eng. 36, 1381–1392 (2011)

    Article  Google Scholar 

  56. Golberg M.A., Chen C.S., Bowman H.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Bound. Elem 23, 285–296 (1999)

    Article  MATH  Google Scholar 

  57. Cheng A.H., Young D.L., Tsai C.C.: Solution of Poisson’s equation by iterative DRBEM using compactly supported, positive definite radial basis function. Eng. Anal. Bound. Elem. 24, 549–557 (2000)

    Article  MATH  Google Scholar 

  58. Florez W., Power H., Chejne F.: Multi-domain dual reciprocity BEM approach for the Navier–Stokes systems of equations. Commun. Numer. Methods Eng. 16, 671–681 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wen P.H., Aliabadi M.H., Young A.: Application of dual reciprocity method to plates and shells. Eng. Anal. Bound. Elem. 24, 583–590 (2000)

    Article  MATH  Google Scholar 

  60. Sladek J., Sladek V.: A meshless method for large deflection of plates. Comput. Mech. 30, 155–163 (2003)

    Article  MATH  Google Scholar 

  61. Mai-Duy N., Tran-Cong T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14, 185–199 (2001)

    Article  Google Scholar 

  62. Mai-Duy N., Tran-Cong T.: Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks. Int. J. Numer. Methords Fluids 37, 65–86 (2001)

    Article  MATH  Google Scholar 

  63. Mai-Duy N., Tran-Cong T.: Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations. Eng. Anal. Bound. Elem. 26, 133–156 (2002)

    Article  MATH  Google Scholar 

  64. Ferreira A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct. 59, 385–392 (2003)

    Article  Google Scholar 

  65. Narcowich F.J., Ward J.D., Wendland H.: Refined error estimates for radial basis function interpolation. Constr. Approx. 19, 541–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Dai K.J., Liu G.R., Lim K.M., Han X., Du S.Y.: A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates. Comput. Mech. 34, 213–223 (2004)

    Article  MATH  Google Scholar 

  67. Dehghan M., Shokri A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tatari M., Dehghan M.: A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng. Anal. Bound. Elem. 34, 206–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Liew K.M., Zhao Xin., Ferreira Antonio J.M.: A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031–2041 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal M. Mukhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtar, F.M., Al-Gadhib, A.H. Collocation Method for Elastoplastic Analysis of a Pressurized Functionally Graded Tube. Arab J Sci Eng 39, 7701–7716 (2014). https://doi.org/10.1007/s13369-014-1383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1383-1

Keywords

Navigation