Skip to main content

Advertisement

Log in

Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of silicate content (SiO2/Na2O) of an activator on physical and mechanical properties of alkali-activated blast furnace slag paste has been investigated. The paste was produced by activating blast furnace slag with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution. The SiO2/Na2O ratio varied from 0.2 to 1.2. The test specimens were cast and cured in water (fully immersed condition) at room temperature and the direct compressive strength at the age of 3, 7, 14, 21, 28 days were obtained. It has been observed that the compressive strength and ultrasonic pulse velocity of test specimen increases with the increase in silicate content up to a silicate ratio of 0.8. Compressive strength is found to be a maximum 44.53 MPa at 28 days. It is noticed further that the compressive strength increases with age. It is also observed that the silicate ratio has a significant influence on porosity, water absorption and water sorptivity. The mineralogical and micro-structural changes were studied using XRD and SEM/EDX, while porosity, total pore volume, pore-size distribution, etc., were studied using mercury intrusion porosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidovits J.: 5th Global warming international conference, global warming impact on the cement and aggregates industries. World Resour. Rev. 6, 263–278 (1994)

    Google Scholar 

  2. Wang S.D., Pu X.C., Scrivener K.L., Pratt P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cement Res. 27, 93–102 (1995)

    Article  Google Scholar 

  3. Yang K.H., Song J.K., Ashour A.F., Lee E.T.: Properties of cementless mortars activated by sodium silicate. Construct. Build. Mater. 22(9), 1981–1989 (2008)

    Article  Google Scholar 

  4. ACI-116R, Cement and Concrete Terminology. Reported by ACI Committee 116. American Concrete Institute (2000)

  5. Shi, C.; Krivenko, P.V. and Roy, D.: Alkali-Activated Cements and Concrete. Taylor and Francis, Abingdon (2006)

  6. Niu, Q; Feng, N.; Yang; J.ve Zheng, X.: Effect of superfine slag powder on cement properties. Cement Concrete Res. 32(4), 615–621 (2002)

  7. Bakharev T., Sanjayan J.G., Cheng Y.B.: Alkali activation of Australian slag cement. Cement Concrete Res. 29(1), 113–120 (1999)

    Article  Google Scholar 

  8. Brough A.R., Atkinson A.: Sodium silicate based, alkali activated slag mortars: Part 1 Strength, hydration and microstructure. Cement Concrete Res. 32(6), 865–879 (2002)

    Article  Google Scholar 

  9. Roy D.M.: Alkali activated cements: opportunities and challenges. Cement Concrete Res. 29, 249–54 (1999)

  10. Krivenko, P.D.: Alkaline cements and concrete. Paper presented at the first International conference in Kiev, Ukraine (1994)

  11. Jiang, W.: Alkali-activated cementitious materials: mechanisms, microstructure and properties, Ph.D. Thesis. The Pennslyvania State University, Pennsylvania (1997)

  12. Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)

  13. Wang S.D., Scrivener K.L.: 29Si and 27Al NMR study of alkali activated slag. Cement Concrete Res. 33(5), 769–774 (2003)

    Article  Google Scholar 

  14. Song S., Sohn D., Jennings H.M., Mason T.O.: Hydration of alkali activated ground granulated blast furnace slag. J. Mater. Sci. 35, 249–257 (2000)

    Article  Google Scholar 

  15. Qureshi M.N., Ghosh S.: Effect of alkali content on strength and microstructure of GGBFS paste. Global J. Res. Eng. 13(1), 11–19 (2013)

    Google Scholar 

  16. Chen W., Brouwers H.: The hydration of slag part 1: reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)

    Article  Google Scholar 

  17. Krizan D., Zivanovic B.: Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cement Concrete Res. 32(8), 1181–1188 (2002)

    Article  Google Scholar 

  18. Wang S.D., Scrivener K.L., Pratt P.L.: Factors affecting the strength of alkali activated slag. Cement Concrete Res. 24(6), 1033–1043 (1994)

    Article  Google Scholar 

  19. Xu H., Van Deventer J.S.J.: The geo-polymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–66 (2000)

  20. Palomo A., Grutzeck M.W., Blanco M.T.: Alkali-activated fly ashes, a cement for the future. Cement Concrete Res. 29, 1323–1329 (1999)

    Article  Google Scholar 

  21. Bondar D., Lynsdale C.J., Milestone N.B., Hassani N., Ramezanianpour A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement Concrete Res. 33(2), 251–260 (2011)

    Article  Google Scholar 

  22. Cihangir F., Erç\({\imath}\)kd\({\imath}\) B., Kesimal A., Turan A., Deveci H.: Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Miner. Eng. 30, 33–43 (2012)

  23. Bougara A., Lynsdale C., Ezziane K.: Activation of Algerian slag in mortars. Construct. Build. Mater. 23(1), 542–547 (2009)

    Article  Google Scholar 

  24. Qureshi M.N., Ghosh S.: Effect of curing conditions on the compressive strength and microstructure of alkali-activated GGBS paste. Int. J. Eng. Sci. Invent. 2(2), 24–31 (2013)

    Google Scholar 

  25. Qureshi M.N., Ghosh S.: Effect of fineness on engineering properties of alkali-activated GGBFS paste. Int. J. Appl. Eng. Res. 8(2), 131–146 (2013)

    Google Scholar 

  26. Fernández-Jiménez A., Palomo J.G., Puertas F.: Alkali-activated slag mortars: mechanical strength behaviour. Cement Concrete Res. 29(8), 1313–1321 (1999)

    Article  Google Scholar 

  27. Zhong B., Yang N.: Hydration characteristics of water glass-activated slag cement. Bull. Chin. Ceramic Soc. 23(6), 4–8 (1993)

    Google Scholar 

  28. Elahi, A.; Khan, Q.U.Z.; Barbhuiya, S.A.; Basheer, P.A.M.; Russell, M.I.: Hydration characteristics of cement paste containing supplementary cementitious materials. Arab. J. Sci. Eng. 37, 535–544 (2012)

  29. Qureshi, M.N.; Ghosh S.: Workability and setting time of alkali activated blast furnace slag paste. ASTM Int. J. Adv. Civil Eng. Mater. 2(1) (2013). doi:10.1520/ACEM20120029

  30. Hyung-Seok K., Joo-Won P., Yong-Jun A., Jong-Soo B., Choon H.: Activation of ground granulated blast furnace slag cement by calcined alunite. Mater. Transact. 52(2), 210–218 (2011)

    Article  Google Scholar 

  31. ASTM C1437-07, Standard test method for flow of hydraulic cement mortar, ASTM Standards, ASTM International, West Conshohocken, pp 1–2 (2007)

  32. ASTM C 230/C 230M −08, Standard specifications for flow table for use in tests of hydraulic cement, ASTM Standards, ASTM International, West Conshohocken, pp. 1–6 (2008)

  33. ASTM C 1585-04: Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM Standards, ASTM International, West Conshohocken, pp. 1–4 (2004)

  34. IS: 13311 (Part 1). Indian standard non-destructive testing of concrete—methods of test. Part 1—ultrasonic pulse velocity. Bureau of Indian Standards, New Delhi, pp. 1–7 (1992)

  35. Washburn, E.W.: The dynamics of fluid flow. Phys. Rev. 17(3), 2827–2833 (1921)

  36. Sathonsaowaphak A., Chindaprasirt P., Pimraksa K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168, 44–50 (2009)

    Article  Google Scholar 

  37. Shi C., Li Y.: Investigation on some factors affecting the characteristics of alkali phosphorus slag cement. Cement Concrete Res. 19(4), 527–533 (1989)

    Article  Google Scholar 

  38. Yu S., Wang W.: Hardening mechanism of clinker free sodium silicate slag cement. J. Chin. Silicate Soc. 18(2), 104–109 (1990)

    Google Scholar 

  39. Zhong B., Yang N.: Hydration characteristics of water glass-activated slag cement. Bull. Chin. Ceramic Soc. 23(6), 4–8 (1993)

    Google Scholar 

  40. Lu, P.: Origin and development of microstructure of alkali-BFS-SS paste. 2nd Beijing International Symposium on Cements and Concrete, Beijing, pp. 232–239 (1989)

  41. Bondar D., Lynsdale C.J., Milestone N.B., Hassani N., Ramezanianpour A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement Concrete Res. 33(2), 251–260 (2011)

    Article  Google Scholar 

  42. Cincotto, M.A.; Melo, A.A.; Repette, W.L.: Effect of different activators type and dosages and relation to autogenous shrinkage of activated blast furnace slag cement. In: Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, pp. 1878–1887 (2003)

  43. Astutiningsih, S.; Liu, Y.: Geopolymerisation of Australian slag with effective dissolution by the alkali. In: Davidovits, J. (ed.) Proceedings of the World Congress Geopolymer, Saint Quentin, pp. 69–73 (2005)

  44. Adam, A.A.: Strength and durability properties of alkali activated slag and fly ash based geopoymer concrete, Ph.D. Thesis, RMIT University, Melbourne (2009)

  45. Collins F., Sanjayan J.G.: Microcracking and strength development of alkali-activated slag concrete. Cement Concrete Res. 23, 345–352 (2001)

    Article  Google Scholar 

  46. Atis C.D., Belim C., Celik O., Karahan O.: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construct. Build. Mater. 23, 548–555 (2009)

    Article  Google Scholar 

  47. Palacious M., Puertas F.: Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cement Concrete Res. 37, 691–702 (2007)

    Article  Google Scholar 

  48. Puertas F., Amat T., Fernandez-Jimenez A., Vazquez T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement Concrete Res. 33, 2031–2036 (2003)

    Article  Google Scholar 

  49. Winslow D.N., Diamond S.: A mercury porosimetry study of the evolution of porosity in Portland cement. J. Mater. 5((3), 564–585 (1970)

    Google Scholar 

  50. Arandigoyen M., Alvarez J.I.: Blended pastes of cement and lime: pore structure and capillary porosity. Appl. Surf. Sci. 252, 8077–8085 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Nadeem Qureshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, M.N., Ghosh, S. Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste. Arab J Sci Eng 39, 5905–5916 (2014). https://doi.org/10.1007/s13369-014-1172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1172-x

Keywords

Navigation