Skip to main content
Log in

Effect of Tool Geometry in Turning AISI 1045 Steel: Experimental Investigation and FEM Analysis

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Tool geometry selection and its optimization are complex tasks involving many considerations, since the geometries chosen will have individual influence and combined influence along with the other values on the machining process. In this investigation, geometrical parameters of cutting tool insert such as insert shape (including angle of cutting edge), relief angle and nose radius are chosen for analysis maintaining the machining parameters constant. Experiments are designed using Taguchi’s design of experiment and the output quality characteristics such as flank wear, surface roughness and material removal rate (MRR) are analyzed using signal-to-noise ratio and analysis of variance. For three parameters, varied through three levels, a suitable L9 orthogonal array is chosen. Nine different ISO-designated cutting tool inserts of various shapes, relief angle and nose radius are used in this analysis. From the experimental results, it is found that cutting insert shape is the most significant factor contributing by 45.27 % followed by nose radius by 36.37 % and relief angle by 5.28 % toward the response. A confirmation experiment and finite element analysis are performed for the optimal geometrical parameters. From the investigation, considerable improvement in the performance of cutting tool insert is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider, G., Jr.: Metal Removal Methods. GMRS Associates (2002)

  2. Astakhov, V.P.: Geometry of Single-point Turning Tools and Drills—Fundamentals and Practical Applications. Springer, London (2010)

  3. Astakhov, V.P.; Paulo Davim, J.: Tools (geometry and material) and tool wear. In: Paulo Davim, J. (ed.) Machining—Fundamentals and Recent Advances, pp. 29–57. Springer, London (2008)

  4. Dogra M., Sharma V.S., Dureja J.: Effect of tool geometry variation on finish turning—a Review. J. Eng. Sci. Technol. Rev. 4, 1–13 (2011)

    Article  Google Scholar 

  5. Kolahan, F.; Manoochehri, M.; Hosseini, A.: Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI 1045 Steel, vol. 74. World Academy of Science, Engineering and Technology, pp. 786–789 (2011)

  6. Santha Kumari K.V., Jana D.R., Kumar A.: Effects of tool setting on tool cutting angle on turning operation. ARPN J. Eng. Appl. Sci. 18, 27–31 (2010)

    Google Scholar 

  7. Klocke F., Kratz H.: Advanced tool edge geometry for high precision hard turning. CIRP Ann. Manuf. Technol. 54, 47–50 (2005)

    Article  Google Scholar 

  8. Liu K., Melkote S.N.: Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 49, 650–660 (2007)

    Article  Google Scholar 

  9. Saglam H., Yaldiz S., Unsacar F.: The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater. Design 28, 101–111 (2007)

    Article  Google Scholar 

  10. Gokkaya, H.; Nalbant, M.: The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel. Mater. Design 28, 717–721 (2007)

    Google Scholar 

  11. Nalbant M., Altin A., Gokkaya H.: The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater. Design. 28, 1334–1338 (2007)

    Article  Google Scholar 

  12. Nalbant, M.; Altin, A.; Gokkaya, H.: The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys. Mater. Design 28, 1719–1724 (2007)

    Google Scholar 

  13. Saglam H., Unsacar F., Yaldiz S.: Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. Int. J. Mach. Tools Manuf. 46, 132–141 (2006)

    Article  Google Scholar 

  14. Kountanya R., Al-Zkeri I., Altan T.: Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steel. J. Mater. Process. Technol. 209, 5068–5076 (2009)

    Article  Google Scholar 

  15. Ning, F.; Ming, C.; Peiquan, G.: Simulation of cutting tool geometry parameters impact on residual stress. In: Proceedings of 21st Annual Int Conf Chinese Control and Decision Conference, Guilin, pp. 5472–5475 (2009)

  16. Jing, X.; Zhang, D.; Wang, Z.; Li, G.: Investigations of tool geometry in ultraprecision cutting: a FEM simulation approach. In: Proceedings of International Conference of Mechatronics and Automation, Changchun, pp. 5099–5104 (2009)

  17. Paris, H.; Peigne, G.: Influence of the cutting tool geometrical defects on the dynamic behaviour of machining. Int. J. Interact. Design Manuf. 1, 41–49 (2007)

    Google Scholar 

  18. Yen Y.-C., Sohner J., Lilly B., Altan T.: Estimation of tool wear in orthogonal cutting using the finite element analysis. J. Mater. Process. Technol. 146, 82–91 (2004)

    Article  Google Scholar 

  19. Nalbant M., Gokkaya H., Sur G.: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Design 28, 1379–1385 (2007)

    Article  Google Scholar 

  20. Maranhao, C.C.; Paulo Davim, J.: Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation. Simul. Model. Pract. Theory. 18(2), 139–156 (2010)

    Google Scholar 

  21. Davim J.P., Maranhao C.: A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Mater. Design. 30(1), 160–165 (2009)

    Article  Google Scholar 

  22. Kidhir, B.A.; Mohammed, B.; Suhail, A.H.; Ismail, N.: Investigating the influence of approach angle for ceramic cutting tools on chip formation during turning. Arab. J. Sci. Eng. 37(3), 793–802 (2012)

    Google Scholar 

  23. Suhail, A.H.; Ismail, N.; Wong, S.V.; Abdul Jalil, N.A.: Surface roughness identification using the grey relational analysis with multiple performance characteristics in turning operations. Arab. J. Sci. Eng. 37(4), 1111–1117 (2012)

    Google Scholar 

  24. Kok M.: Modeling and assessment of some factors that influence surface roughness for the machining of particle reinforced metal matrix composites. Arab. J. Sci. Eng. 36(7), 1347–1365 (2011)

    Article  Google Scholar 

  25. Pinar, A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab. J. Sci. Eng. (2012). doi:10.1007/s13369-012-0372-5

  26. Noordin M.Y., Venkatesh V.C., Sharif S., Elting S., Abdullah A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145, 46–58 (2004)

    Article  Google Scholar 

  27. Roy, R.K: Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. Wiley, USA (2001)

  28. Eºme, U.: Application of Taguchi method for the optimization of resistance spot welding. Arab. J. Sci. Eng. 34(2B), 519–528 (2009)

    Google Scholar 

  29. Oberg, E.; Jones, F.D.; Horton, H.L.; Ryffel, H.H.: Machinery’s Handbook, 28th edn. Industrial Press, New York (2008)

  30. Gamst, G.; Meyers, L.S.; Guarino, A.J.: Analysis of Variance Designs—A Conceptual and Computational Approach with SPSS and SAS. Cambridge University Press, UK (2008)

  31. Arrazola, P.J.: Finite-element modeling and simulation. In: Paulo Davim, J. (ed.) Machining of Hard Materials, pp. 143–175. Springer, London (2011)

  32. Astakhov, V.P.; Outeiro, J.C.: Metal cutting mechanics, finite element modelling. In: Paulo Davim, J. (ed.) Machining—Fundamentals and Recent Advances, pp. 1–27. Springer, London (2008)

  33. Ketabchi, M.; Mohammadi, H.; Izadi, M.: Finite-element simulation and experimental investigation of isothermal backward extrusion of 7075 Al Alloy. Arab. J. Sci. Eng. 37(8), 2287–2296 (2012)

    Google Scholar 

  34. Vaz M. Jr.: On the numerical simulation of machining processes. J. Braz. Soc. Mech. Sci. 22(2), 179–188 (2000)

    Article  Google Scholar 

  35. Usui, E.; Hirota, A.; Masuko, M.: Analytical prediction of three-dimensional cutting process. Part 3. Cutting temperature and crater wear of carbide tool. Trans. ASME 100, 222–228 (1978)

    Google Scholar 

  36. Kitagawa T., Maekawa K., Shirakashi T., Usui E.: Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 1(Characteristic equation of flank wear. Bull. Jpn. Soc. Precis. Eng. 22(4), 263–269 (1988)

    Google Scholar 

  37. Kitagawa T., Maekawa K., Shirakashi T., Usui E.: Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 2(Prediction of flank wear. Bull. Jpn. Soc. Precis. Eng. 23(2), 126–134 (1989)

    Google Scholar 

  38. Juneja, B.L.; Seth, N.: Fundamentals of Metal Cutting and Machine Tools. New Age International (P) Limited, New Delhi (2005)

  39. Bhattacharyya, A.: Metal Cutting: Theory and Practice. New Central Book Agency (P) Ltd, New Delhi (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Senthilkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthilkumar, N., Tamizharasan, T. Effect of Tool Geometry in Turning AISI 1045 Steel: Experimental Investigation and FEM Analysis. Arab J Sci Eng 39, 4963–4975 (2014). https://doi.org/10.1007/s13369-014-1054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1054-2

Keywords

Navigation