Skip to main content
Log in

Rough Set Approach for Characterizing Customer Behavior

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Customer behavior analysis is essential for any business. The business leaders require characterizing the behavior of customers to build long-term profitable customers. It can be done by grouping or segmenting the customers according to their characteristics. The customers grouped together are described by rules to portray their behavior. These rules can be used by the marketing managers to predict the behavior of new customer by comparing with the characteristics of existing customer and to personalize the service. This paper focuses the rough set approach for customer segmentation and rule generation for customer behavior analysis. Real customer data have been collected from four different enterprises. The experimental results prove that our proposed clustering and rule induction algorithm is more efficient for customer behavior analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berson, A.; Smith, S.; Thearling, K.: Building data mining applications for CRM. Tata McGraw-Hill Edition, New York (2000)

  2. Ngai E.W.T., Li X., Chau D.C.K.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36, 2592–2602 (2009)

    Article  Google Scholar 

  3. Ling R., Yen D.C.: Customer relationship management: an analysis framework and implementation strategies. J. Comput. Inf. Syst. 41, 82–97 (2001)

    Google Scholar 

  4. Liang Y.H.: Integration of data mining technologies to analyze customer value for the automotive maintenance industry. Expert Syst. Appl. 37(12), 7489–7496 (2010)

    Article  Google Scholar 

  5. Cheng, C.H.; Chen, Y.S.: Classifying the segmentation of customer value via RFM model and RS theory. Expert Syst. Appl. 36, 4176–4184 (2009)

    Google Scholar 

  6. Wu, J.; Lin, Z.: Research on Customer Segmentation Model by Clustering. In: Proceedings of the ACM 7th international conference on Electronic commerce, Xi-an, pp. 316–318 (2005)

  7. Pawlak, Z.: Rough set. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Google Scholar 

  8. Bean, C.; Kambhampati, C.: Autonomous clustering using rough set theory. Int. J. Autom. Comput. 5, 90–102 (2008)

    Google Scholar 

  9. Grzymala-Busse, J.: A new version of the rule induction system LERS. Fund. Inf. 31(1), 27–39 (1997)

    Google Scholar 

  10. Chen H.L., Chuang K.T., Chen M.S.: On data labeling for clustering categorical data. IEEE Trans. Knowl. Data. Eng. 20, 1458–1471 (2008)

    Article  Google Scholar 

  11. Mazlack, L.J.; He, A.; Zhu, Y.; Coppock, S.: A rough set approach in choosing clustering attributes. In: Proceedings of the ISCA 13th international conference on Computer Applications in Industry and Engineering (CAINE-2000), Honolulu, pp. 1–6 (2000)

  12. Parmar, D.; Wu, T.; Blackhurst, J.: MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl. Eng. 63, 879–893 (2007)

  13. Kumar, P.; Tripathy, B.K.: MMeR: an algorithm for clustering heterogeneous data using rough set theory. Int. J. Rapid Manuf. (IJRAPIDM) 1, 189–207 (2009)

    Google Scholar 

  14. Tripathy, B.K.; Ghosh, A.: SDR: aAn algorithm for clustering categorical data using rough set theory. In: IEEE Conference on Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, pp. 867–872 (2011)

  15. Tripathy, B.K.; Ghosh, A.: SSDR: an algorithm for clustering categorical data using rough set theory. Adv. Appl. Sci. Res. 2, 314–326 (2011)

    Google Scholar 

  16. Herawan T., Deris M.M., Abawajy J.H.: A rough set approach for selecting clustering attribute. Knowl. Based Syst. 23, 220–231 (2010)

    Article  Google Scholar 

  17. Herawan T., Ghazali R., Yanto I.T.R., Deris M.M.: Rough set approach for categorical data clustering. Int. J. Database Theory Appl. 3, 33–52 (2010)

    Google Scholar 

  18. Witten, I.H.; Frank, E.: Data mining: practical machine learning tools and techniques. Morgan Kaufmann, USA (2005)

  19. Han, J.; Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann, USA (2001)

  20. Pawlak, Z.; Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Google Scholar 

  21. Grzymala-Busse, J.W.: Rule Induction. In: Maimon, O.; Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, Part 2, Chapter 13, pp. 277–294. Springer, Berlin (2005)

  22. Grzymala-Busse, J. W.: MLEM2–Discretization during rule induction. In: Proceedings of the IIPWM’2003, International Conference on Intelligent Information Processing and WEB Mining Systems, Zakopane, pp. 499–508 (2003)

  23. Chan, C.C.: Incremental learning of production rules from examples under uncertainty: a rough set approach. Int. J. Softw. Eng. Knowl. 1(4), 439–461 (1991)

    Google Scholar 

  24. Ziarko W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Greco, S.; Matarazzo, B.; Slowinski, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, A.; Skowron, S.; Ohsuda, S. (eds.) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, LNAI, vol. 1711, pp. 146–157. Springer, Berlin (1999)

  26. Blaszczynski, J.; Greco, S.; Slowinski, R.: Multi-criteria classification: a new scheme for application of dominance-based decision rules. Eur. J. Oper. Res. 181(3), 1030–1044 (2007)

    Google Scholar 

  27. dos Santos, J.B.; Heuser, C.A.; Moreira, V.P.; Wives, L.K.: Automatic threshold estimation for data matching applications. Inf. Sci. 181, 2685–2699 (2011)

    Google Scholar 

  28. Kunz, T.; Black, J.P.: Using automatic process clustering for design recovery and distributed debugging. IEEE Trans. Softw. Eng. 21, 515–527 (1995)

    Google Scholar 

  29. Gupta, G.K.: Introduction to data mining with case studies. PHI Learning Private Limited, New Delhi (2009)

  30. Fielding A.H., Bell J.F.: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997)

    Article  Google Scholar 

  31. Japkowicz, N.; Shah, M.: Evaluating learning algorithms: a classification perspective. Cambridge University Press, Cambridge (2011)

  32. Pham, H.N.A.; Triantaphyllou, E.: The impact of overfitting and overgeneralization on the classification accuracy in data mining. In: Maimon, O.; Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data Mining, Part 4, Chapter 5, pp. 391–431. Springer, Berlin (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha Dhandayudam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhandayudam, P., Krishnamurthi, I. Rough Set Approach for Characterizing Customer Behavior. Arab J Sci Eng 39, 4565–4576 (2014). https://doi.org/10.1007/s13369-014-1013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1013-y

Keywords

Navigation