Skip to main content

Advertisement

Log in

Application of a Multi-Objective Approach and Sequential Covering Algorithm to the Fatigue Segment Classification Problem

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a multi-objective rule discovery approach is introduced to address the problem related to fatigue data editing. A set of rules are introduced to simplify the editing process, with which users can easily predict an appropriate level of damage for fatigue data segments subject to SAE1045 steel without need for a cycle-counting algorithm or stress analysis. A multi-objective approach called the elitist non-dominated sorting in genetic algorithm (NSGA-II) is modified and applied to find high-level knowledge representation IF-THEN rules in the eight-dimensional search space. Three possible outcomes represented with the labels very low, low and high are chosen for the rule consequent. Two conflicting classification objectives, the predictive accuracy and comprehensibility, are considered as the rule optimisation criteria. To accelerate the searching process, a sequential covering algorithm is applied in advance of the training session, which positively reduces data size and provides several simple rules. A set of seven high-accuracy and high-interpretability rules is discovered, and their uncomplicated implementation provides an alternative to the task of estimating the fatigue damage value and could be a part of a fatigue data editing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AA1Car: Auto Accidents Caused by Mechanical Failures. http://www.aa1car.com/library/auto_accident.htm (2011)

  2. Abdullah, S.; Choi, J.C.; Giacomin, J.A.; Yates, J.R.: Bump extraction algorithm for variable amplitude fatigue loading. Int. J. Fatigue 28(7), 675–691 ISSN:0142–1123 (2006)

    Google Scholar 

  3. Petracconi, C.L.; Ferreira, S.E.; Palma, E.S.: Fatigue life simulation of a rear tow hook assembly of a passenger car. Eng. Fail Anal. 17(2), 455–463 ISSN:1350–6307 (2010)

    Google Scholar 

  4. Stephens, R.I.; Dindinger, P.M.; Gunger, J.E.: Fatigue damage editing for accelerated durability testing using strain range and SWT parameter criteria. Int. J. Fatigue 19(8–9), 599–606 ISSN:0142–1123 (1997)

    Google Scholar 

  5. Oh, C.-S.: Application of wavelet transform in fatigue history editing. Int. J. Fatigue 23(3), 241–250 ISSN:0142–1123 (2001)

    Google Scholar 

  6. Putra, T.E.; Abdullah, S.; Nuawi, M.Z.; Nopiah, Z.M.: Wavelet coefficient extraction algorithm for extracting fatigue features in variable amplitude fatigue loading. J. Appl. Sci. 10(4), 277-283 ISSN:1812–5654 (2010)

    Google Scholar 

  7. Abdullah, S.; Sahadan, S.N.; Nuawi, M.Z.; Nopiah, Z.M.: Fatigue data analysis using continuos wavelet transform and discrete wavelet transform. Key Eng. Mater. 462–463, 461–466 ISSN:1013-9826 (2011)

    Google Scholar 

  8. Abdullah, S.; Ismail, N.; Nuawi, M.Z.; Nizwan, C.K.E.; Abdullah, M.F.: Comparative study of the strain signal and the edited strain signal Adv. Mat. Res. 264–265, 1592–1597 ISSN:1022-6680 (2011)

    Google Scholar 

  9. Han, J.; Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, California (2006)

  10. Brotherton, T.; Chadderdon, G.; Grabill, P.: Automated rule extraction for engine vibration analysis. In: Aerospace Conference, 1999. Proceedings. 1999 IEEE, vol. 23, pp. 29–38 (1999)

  11. Sugumaran, V.; Ramachandran, K.I.: Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing. Mech. Syst. Signal Process. 21(5), 2237–2247 ISSN:0888–3270 (2007)

    Google Scholar 

  12. Li, M.; Shu, Y.; Mao, J.; Li, X.: Extraction Fault Rule of Rotation Equipment Based on Rough Set. In: Intelligent Computation Technology and Automation, 2009. ICICTA ’09 Second International Conference on, pp. 604–607 (2009)

  13. Freitas A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag, New York (2002)

    Book  MATH  Google Scholar 

  14. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 ISSN:1089-778X (2002)

    Google Scholar 

  15. Deb K., Agarwal S.: Simulated binary crossover for continuous search space. Complex Systems 9(2), 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Omkar, S.N.; Karanth, U.R.: Rule extraction for classification of acoustic emission signals using Ant Colony Optimisation. Eng. Appl. Artif. Intel. 21 (8), 1381–1388 ISSN:0952-1976 (2008)

    Google Scholar 

  17. Chen, J.-S.; Hou, J.-L.: A combination genetic algorithm with applications on portfolio optimization. Adv. Appl. Artif. Intel. 4031 (Lect Notes Comp Sci.), 197–206 ISSN:0302-9743 (2006)

  18. Konak, A.; Colt, D.W.; E.Smith, A.: Multi-objective optimization genetic algorithms: a tutorial. Reliab. Eng. Syst. Safe 91, 992–1007 ISSN:0951-8320 (2006)

  19. Dehuri, S.; Patnaik, S.; Ghosh, A.; Mall, R.: Application of elitist multi-objective genetic algorithm for classification rule generation. Appl. Soft Comput. 8(1), 477–487 ISSN:1568-4946 (2008)

    Google Scholar 

  20. Yamamoto, T.; Ishibuchi, H.: Performance evaluation of three-objective genetic rule selection. In: Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE International Conference on, vol. 141, pp. 149–154 (2003)

  21. Chaochang, C.; Hsu, P.L.: A constraint-based genetic algorithm approach for mining classification rules. IEEE T. Syst. Man Cy. C. 35(2), 205–220 ISSN:1094-6977 (2005)

  22. Mansoori, E.G.; Zolghadri, M.J.; Katebi, S.D.: SGERD: a steady-state genetic algorithm FOR extracting fuzzy classification rules from data. IEEE T. Fuzzy Syst. 16(4), 1061–1071 ISSN:1063-6706 (2008)

    Google Scholar 

  23. Muntean, M.; Rotar, C.; Ileana, I.; Valean, H.: Learning classification rules with genetic algorithm. In: Communications (COMM), 2010 8th International Conference on, pp. 213–216 (2010)

  24. Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer USA (2007)

  25. Konak, A.; Colt, D.W.; Smith, A.E.: Multi-objective optimization genetic algorithms: a tutorial. Reliab. Eng. Syst. Saft.91, 992–1007 (2006)

    Google Scholar 

  26. Deb, K.: A robust evolutionary framework for multi-objective optimization. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 633–640. Atlanta, GA, USA ACM 1389223

  27. Fernandez, A.; Garcia, S.; Luengo, J.; Bernado-Mansilla, E.; Herrera, F.: Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE T. Evolut. Comput. 14(6), 913–941 ISSN:1089-778X (2010)

    Google Scholar 

  28. Kaya, M.: Autonomous classifiers with understandable rule using multi-objective genetic algorithms. Expert Syst. Appl. 37(4), 3489–3494 ISSN:0957-4174 (2010)

    Google Scholar 

  29. Ibrahim, S.B.M.: The PID controller design using genetic algorithm. University of Southern Queensland (2005)

  30. Rajesh, R.; Kaimal, M.R.: GAVLC: GA with variable length chromosome for the simultaneous design and stability analysis of T-S fuzzy controllers. In: Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on, pp. 1389–1396 (2008)

  31. Deep, K.; Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 ISSN:0096-3003 (2007)

    Google Scholar 

  32. Nopiah, Z.M.; Baharin, M.N.; Abdullah, S.; Khairir, M.I.: The detection of abrupt changes for variable amplitude fatigue loading by using running damage extraction method. J. Appl. Sci. 10, 544–550 (2010)

    Google Scholar 

  33. Nopiah, Z.M.; Khairir, M.I.; Abdullah, S.: Segmentation and scattering of fatigue damage time series data by kurtosis and root mean square. In: Proceeding of 7th WSEAS International Conference on Signal Process, Istanbul, Turkey, pp. 64–68 (2008)

  34. Nopiah, Z.M.; Baharin, M.N.; Abdullah, S.; Khairir, M.I.; Ariffin, A.: Running damage extraction technique for identifying fatigue damaging events. WSEAS Trans. Math. 9(5), 324–333 (2010)

    Google Scholar 

  35. Nopiah, Z.M.; Baharin, M.N.; Abdullah, S.; Khairir, M.I.; Ariffin, A.: Running damage extraction technique for identifying fatigue damaging events. WSEAS Trans. Math. 9(5), 324–333 ISSN:1109-2769 (2010)

    Google Scholar 

  36. Schulz, S.; Woerner, A.: Automatic motion segmentation for human motion synthesis. In: Proceedings of the 6th International Conference on Articulated Motion and Deformable Objects, pp. 182–191. Springer-Verlag, Mallorca, Spain, 1876002 (2010)

  37. Nopiah, Z.M.; Abdullah, S.; Baharin, M.N.; Putra, T.E.; Sahadan, S.N.; Willis, K.O.: Comparative study on data editing techniques for fatigue time series signal. Adv. Mat. Res. 146–147, 1681–1684 (2010)

    Google Scholar 

  38. Nopiah, Z.M.; Osman, M.H.; Abdullah, S.; Baharin, M.N.: The identification of low fatigue damage using fuzzy double clustering framework. In: Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on, pp. 181–186 (2001)

  39. Sreejith, B.; Verma, A.K.; Srividya, A.: Fault diagnosis of rolling element bearing using time-domain features and neural networks. In: Industrial and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third international Conference on, pp. 1–6 (2008)

  40. Abdullah, S.; Putra, T.E.; Nuawi, M.Z.; Nopiah, Z.M.; Arifin, A.; Abdullah, L.: The Morlet wavelet analysis for fatigue feature clustering. WSEAS Trans. Math. 9(5), 345–354 ISSN:1109-2769 (2010)

    Google Scholar 

  41. Wu, W.F.; Liou, H.Y.; Tse, H.C.: Estimation of fatigue damage and fatigue life of components under random loading. Int. J. Pres. Ves. Pip. 72(3), 243–249 ISSN:0308-0161 (1997)

    Google Scholar 

  42. Downing, N.E.: Mean stress effects in stress-life and strain-life fatigue. In: Fatigue 2004: Second SAE Brasil International conference on fatigue, Sao Paulo, Brazil 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Osman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nopiah, Z.M., Osman, M.H., Abdullah, S. et al. Application of a Multi-Objective Approach and Sequential Covering Algorithm to the Fatigue Segment Classification Problem. Arab J Sci Eng 39, 2165–2177 (2014). https://doi.org/10.1007/s13369-013-0745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0745-4

Keywords

Navigation