Skip to main content
Log in

Abnormal ECG Signals Analysis Using Non-Parametric Time–Frequency Techniques

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Due to the high mortality rate of heart diseases, early detection and precise discrimination of ECG arrhythmia are essential for the treatment of patients. Biomedical signals, especially the electrocardiogram (ECG) signal, contain information of the anatomical and physiological state of the human body. The non-stationary multicomponent nature of ECG signals makes the use of time–frequency analysis inevitable. Time–frequency signal analysis offers simultaneous interpretation of the signal in both time and frequency, which allows local, transient or intermittent components to be elucidated. The choice and selection of the proper time–frequency technique that can reveal the exact multicomponent structure of the ECG signals, especially the QRS complex, is vital in many applications, including the diagnosis of medical abnormalities. In this work, we have applied four time–frequency techniques for analyzing abnormal ECG signals. These time–frequency techniques are the Wigner–Ville distribution, the Choi–Williams distribution, the Bessel distribution and the Born–Jordan distribution. The abnormal cardiac signals were taken from a patient with supraventricular arrhythmia and a patient with malignant ventricular arrhythmia. The results obtained showed that the Choi–Williams time–frequency technique has a superior performance, in terms of resolution and cross-term reduction, as compared to other time–frequency distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, S.A.: ECG Success Exercises in ECG Interpretation. F. A. Davis Company, Philadelphia (2008)

  2. Clifford, G.D.; Azuaje, F.; McSharry, P.E.: Advanced Methods and Tools for ECG Data Analysis. Artech House, Inc, Norwood (2006)

  3. Sende, J.: Guide Pratique ECG. Edition ESTEM (2003)

  4. Shade, B.: Pocket ECGs: A Quick Information Guide. The McGraw-Hill Companies, Maidenherd (2008)

  5. Bigan C., Woolfson M.S.: Time–frequency analysis of short segments of biomedical data. IEEE Proc. Sci. Meas. Technol. 147(6), 368–373 (2000)

    Article  Google Scholar 

  6. Clayton, R.H.; Murray, A.: Estimation of the ECG signal spectrum during ventricular fibrillation using the fast Fourier transform and maximum entropy methods. In: Proceedings of the Computers in Cardiology, pp. 867–870, Sept. (1993)

  7. Cooley, J.W.; Tukey, J.W.: An algorithm for machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Google Scholar 

  8. Wood, J.C.; Barry, D.T.: Time–frequency analysis of skeletal muscle and cardiac vibrations. Proc. IEEE 84(9), 1281–1294 (1996)

    Google Scholar 

  9. World Hearth Organization: The Atlas of Heart Disease and Stroke. http://www.who.int/cardiovascular_diseases/resources/atlas/en/

  10. Hussain, Z.M.; Boashash, B.: Adaptive instantaneous frequency estimation of multi-component FM signals using quadratic time–frequency distributions. IEEE Trans. Signal Process. 50(8) pp. 1866–1876, (2002)

    Google Scholar 

  11. Addison, P.S.: Wavelet transforms and the ECG: a review. Physiol. Meas. 26, R155–R199 (2005)

    Google Scholar 

  12. Mousa, A.; Saleem R.: Using reduced interference distribution to analyze abnormal cardiac signal. J. Electr. Eng. 62(3), 168–172 (2011)

    Google Scholar 

  13. Hassanpour, H.; Mesbah, M.; Boashash, B.: EEG spike detection using time–frequency analysis. ICASSP. 5, 421–424 (2004)

    Google Scholar 

  14. Al-Manie, M.A.: Deconvolution methods for biomedical signals analysis. Indian J. Sci. Technol. 3(2), (2010)

  15. Boashash, B.: Time–Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier, Oxford, (2003)

  16. Latif, R.; Aassif, E.; Moudden, A.; Faiz, B.: High resolution time–frequency analysis of an acoustic signal backscattered by a cylindrical shell using a modified Wigner–Ville representation. Meas. Sci. Technol. 14, 1063–1067 (2003)

    Google Scholar 

  17. Latif, R.; Aassif, E. H.; Maze, G.; Decultot, D.; Moudden, A.; Faiz, B.: Analysis of the circumferential acoustic waves backscattered by a tube using the time–frequency representation of Wigner–Ville. J. Meas. Sci. Technol. 11(1), 83–88 (2000)

    Google Scholar 

  18. Latif, R.; Laaboubi, M.; Aassif, E.; Maze, G.: Détermination de l’épaisseur d’un tube élastique à à partir de l’analyse temps-fréquence de Wigner–Ville. J. Acta-Acustica 95(5), 843–848 (2009)

    Google Scholar 

  19. Hussain, Z.M.; Boashash, B.: IF estimation for multicomponent signals. In: Time–frequency Signal Analysis and Processing: A Comprehensive Reference, pp. 437–445. Elsevier, Oxford (2003)

  20. Cohen, L.: Time–frequency distributions—a review. Proc. IEEE 77(7), 941–981 (1989)

    Google Scholar 

  21. Cohen, L.: Time–Frequency Analysis. Prentice Hall PTR, Englewood Cliffs (1995)

  22. Flandrin, P.: Time–Frequency/Time-Scale Analysis. Academic Press, Boston (1998)

  23. Boashash B.: Time–frequency signal analysis. In: Haykin, S. (ed.) Advances in Spectrum Estimation. Prentice-Hall, Englewood Cliffs (1991)

  24. Stankovic, L.J.; Katkovnic, V.: The Wigner distribution of noisy signals with adaptive time–frequency varying window. IEEE Trans. Signal Process. 47(4), 1099–1108 (1996)

    Google Scholar 

  25. Claasen, T.; Mecklenbrauker, W.: The Wigner distribution—a tool for time–frequency signal analysis, 3 parts. Philips J. Res. 35(3, 4/5, 6), 217–250, 276–300, 372–389 (1980)

    Google Scholar 

  26. Guo, Z.; Durand, L.G.; Howard, C.L.: The time–frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Trans. Signal Process. 42(7), 1700–1707 (1994)

    Google Scholar 

  27. Guo, Z.; Durand, L.G.; Lee, H.C.: The time–frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Trans. Signal Proc. 42, 1700–1707 (1994)

    Google Scholar 

  28. Jeong, J.; Willams, W.: Kernel design for reduced interference distributions. IEEE Trans. Signal Process. 40(2), 402–412 (1992)

    Google Scholar 

  29. Choi, H.; Williams, W.: Improved time–frequency representation of multicomponent signals using exponential kernels, IEEE Trans. Signal Process. 37(6), 862–871 (1989)

    Google Scholar 

  30. Hlawatsch, F.; Manickam, T. G.; Urbanke, R. L.; Jones, W.: Smoothed pseudo-Wigner distribution, Choi–Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison. Signal Process. 43(2), 149–168 (1995)

    Google Scholar 

  31. Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys. 7(5), 781–786 (1966)

    Google Scholar 

  32. Thayaparan, V.; Kennedy, S.: Detection of a manoeuvring air target in sea-clutter using joint time–frequency analysis techniques. In: IEE Proceedings—Radar, Sonar and Navigation, vol. 151, pp 19–30, February (2004)

  33. Flandrin, P.: Time–Frequency/Time-Scale Analysis. Academic Press, San Diego, (1999)

  34. O’Neill, J.C.; FLANDRIN P.; Williams, W.J.: On the existence of discrete Wigner distributions. IEEE Signal Process. Lett. 6(12), 304–306 (1999)

  35. Sheean, G.L.: Application of time-varying analysis to diagnostic needle electromyography. Med. Eng. Phys. 34, 249–255 (2012)

    Google Scholar 

  36. Acharya, U.R.; Suri, J.S.; Spaan, J.A.E.; Krishnan, S.M.: Advances in Cardiac Signal Processing. Springer, Berlin (2007)

  37. Rowlands, A.; Sargent, A.: The ECG Workbook, 2nd edn. M&K Publishing, Los Altos (2011)

  38. King, D.E.; Dickerson, L.M.; Sack, J.L.: Acute management of atrial fibrillation: Part II. Prevention of thromboembolic complications. Am. Fam. Phys. 66 (2), 261–265 (2002)

    Google Scholar 

  39. Hebbar A.K., Hueston W.J.: Management of common arrhythmias: Part I. Supraven-tricular arrhythmias. J. Am. Fam. Phys. 65(12), 2479–2486 (2002)

    Google Scholar 

  40. Hebbar, A.K.; Hueston, W.J.: Management of common arrhythmias: Part II. Ventricular arrhythmias and arrhythmias in special populations. J. Am. Fam. Phys. 65(12), 2491–2496 (2002)

    Google Scholar 

  41. Physiobank, Physionet, Physiologic signal archives for biomedical research. http://www.physionet.org/physiobank/. Accessed Aug (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dliou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dliou, A., Latif, R., Laaboubi, M. et al. Abnormal ECG Signals Analysis Using Non-Parametric Time–Frequency Techniques. Arab J Sci Eng 39, 913–921 (2014). https://doi.org/10.1007/s13369-013-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0687-x

Keywords

Navigation