Skip to main content
Log in

A Fast Geodesic Active Contour Model for Medical Image Segmentation Using Prior Analysis and Wavelets

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The deformable geodesic active contour (GAC) method is one of the most popular techniques used in object boundary detection in images. In this work, we improve the automatic GAC technique by incorporating prior information extracted from the image region of interest. In addition, we propose a new stopping function to speed up convergence and improve accuracy. The proposed technique was applied to both synthetic and real medical images. The results show both an improvement of more than 40 % in convergence speed together with an excellent accuracy when compared with the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro, L.G.; Stockman, G.C.: Computer Vision, pp. 279–325. Prentice-Hall, New Jersey, ISBN 0-13-030796-3 (2001)

  2. Khoo, V.S.; Dearnaley, D.P.; Finnigan, D.J.; Padhani, A.; Tanner, S.F.; Leach, M.O.: Magnetic resonance imaging (MRI): considerations and applications in radiotheraphy treatment planning. Radiother. Oncol., 42, 1–15 (1997)

    Google Scholar 

  3. Larie, S.M.; Abukmeil, S.S.: Brain abnormality in schizophrenia: a systematic and quantitative review ofvolumetric magnetic resonance imaging studies. J. Psych. 172, 110–120 (1998)

    Google Scholar 

  4. Taylor P.: Invited review: computer aids for decision-making in diagnostic radiologya literature review. Br. J. Radiol. 68, 945–957 (1995)

    Article  Google Scholar 

  5. Zijdenbos, A.P.; Dawant, B.M.: Brain segmentation and white matter lesion detection in MR images. Crit. Rev. Biomed. Eng. 22, 401–465 (1994)

    Google Scholar 

  6. Worth, A.J.; Makris, N.; Caviness, V.S.; Kennedy, D.N.: Neuroanatomical segmentation in MRI: technological objectives. Int. J. Patt. Recog. Artif. Intell. 11, 1161–1187 (1997)

    Google Scholar 

  7. Davatzikos C.A., Prince J.L.: An active contour model for mapping the cortex. IEEE Trans. Med. Imag. 14, 65–80 (1995)

    Article  Google Scholar 

  8. Kass, M.; Witkin, A.; Terzopoulos, D.: Snakes: active contour models. Int. J. Comp. Vision 1(4), 321–331 (1988)

    Google Scholar 

  9. Lei, H.; Zhigang, P.; Bryan, E.; Xun, W.; Chia, Y.; Kenneth, W.; William, W.: A comparative study of deformable contour methods on medical image segmentation. Image Vision Comput. 26, 141–163 (2008)

    Google Scholar 

  10. Berger, M.O.: Snake growing. In: Faugeras, O. (ed.) In: Computer Vision: Proceedings of First European Conference on Computer Vision (ECCV’90), Antibes, France, April, 1990, Lectures Notes in Computer Science, pp. 570–572. Springer, Berlin (1990)

  11. Cohen L.D.: On active contour models and balloons. CVGIP Image Understand. 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  12. Ueda, N.; Mase, K.: Tracking moving contours using energy-minimizing elastic contour models. In: Sandini, G. (ed.) Computer Vision: Proceedings of Second European Conference on Computer Vision (ECCV’92), Santa Margherita Ligure, Italy, Lectures Notes in Computer Science, pp. 453–457. Springer, Berlin (1992)

  13. Rougon, N.: Prêteux, F.: Deformable markers: Mathematical morphology for active contour models control. In: Image Algebra and Morphological Image Processing II, volume 1568 of SPIE Proceedings, pp. 78–89. SPIE, Bellingham (1991)

  14. Cohen, L.D.; Cohen, I.: Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1131–1147 (1993)

    Google Scholar 

  15. Leitner, F.; Cinquin, P.: From splines and snakes to Snakes Splines. In: Laugier, C. (ed.) Geometric Reasoning: From Perception to Action, volume 708 of Lectures Notes in Computer Science. Springer, Berlin, pp. 264–281 (1993)

  16. Carlbom, I.; Terzopoulos, D.; Harris, K.: Computer-assisted registration, segmentation, and 3D reconstruction from images of neuronal tissue sections. IEEE Trans. Med. Imaging 13(2), 351–362 (1994)

    Google Scholar 

  17. Gupta, A.; O’Donnell, T; Singh, A.: Segmentation and tracking of cine cardiac MR and CT images using a 3-D deformable model. In: Proceedings of IEEE Conference on Computers in Cardiology, (1994)

  18. Lobregt S., Viergever M.A.: A discrete dynamic contour model. IEEE Trans. Med. Imaging 14(1), 12–24 (1995)

    Article  Google Scholar 

  19. Davatzikos, C.A.; Prince, J.L.: An active contour model for mapping the cortex. IEEE Trans. Med. Imaging 14(1), 65–80 (1995)

    Google Scholar 

  20. Lin, W.C.; Chen, S.Y.: A new surface interpolation technique for reconstructing 3D objects from serial cross-sections. Comp Vision Graphics Image Process. 48, 124–143 (1989)

    Google Scholar 

  21. Chang, L.W.; Chen, H.W.; Ho, J.R.: Reconstruction of 3D medical images: a nonlinear interpolation technique for reconstruction of 3D medical images. Comp. Vision Graph. Image Process. 53(4), 382–391 (1991)

    Google Scholar 

  22. Terzopoulos D., Fleischer K.: Deformable models. Visual Comp 4(6), 306–331 (1988)

    Article  Google Scholar 

  23. McInerney, T.; Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Google Scholar 

  24. Amini, A.A.; Weymouth, T.E.; Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867 (1990)

    Google Scholar 

  25. Poon, C.S.; Braun, M.; Fahrig, R.; Ginige, A.; Dorrell, A.: Segmentation of medical images using an active contour model incorporating region-based images features. Phys Med Biol. 42(9), 90–97 (1994)

    Google Scholar 

  26. McInerney, T.; Terzopoulos, D.: Topologically adaptable snakes”. In: Proceedings of Fifth International Conference on Computer Vision (ICCV’95), Cambridge, MA, June, 1995, pp. 840–845. IEEE Computer Society Press, Los Alamitos (1995b)

  27. Rougon, N.; Prêteux, F.: Deformable markers: Mathematical morphology for active contour models control. In: Image Algebra and Morphological Image Processing II, volume 1568 of SPIE Proceedings, pp. 78–89. SPIE, Bellingham (1991)

  28. Chakraborty, A.; Staib, L.H.; Duncan, J.S.: Deformable boundary finding influenced by region homogeneity. In: Proceedings of Conference Computer Vision and Pattern Recognition (CVPR’94), Seattle, WA, June, 1994, pp. 624–627. IEEE Computer Society Press, Los Alamitos (1994)

  29. Chakraborty, A.; Duncan, J.S.: Integration of boundary finding and region-based segmentation using game theory. In: Bizais et al. (1995), 189–200 (1995)

  30. Herlin, I.L.; Ayache, N.: Features extraction and analysis methods for sequences of ultrasound images. Image Vision Comput. 10(10), 673–682 (1992)

    Google Scholar 

  31. Gauch, J.M.; Pien, H.H.; Shah, J.: Hybrid boundary-based and region-based deformable models for biomedical image segmentation. In: Mathematical Methods in Medical Imaging III, volume 2299 of SPIE Proceedings, pp. 72–83. SPIE, San Diego (1994)

  32. Mangin, J.F.; Tupin, F.; Frouin, V.; Bloch, I.; Rougetet, R.; Regis, J.; Lopez-Krahe, J.: Deformable topological models for segmentation of 3D medical images. In: Bizais, et al. (eds.), 153–164 (1995)

  33. Vemuri, B.C.; Radisavljevic, A.: Multiresolution stochastic hybrid shape models with fractal priors. ACM Trans. Graph. 13(2), 177–207 (1994)

    Google Scholar 

  34. Staib, L.H.; Duncan, J.S.: Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal Mach Intell 14(11), 1061–1075 (1992a)

  35. Worring, M.; Smeulders, A.W.M.; Staib, L.H.; Duncan, J.S.: Parameterized feasible boundaries in gradient vector fields. In: Colchester, A.C.F.; Hawkes, D.J. (eds.) Information Processing in Medical Imaging: Proceedings of 13th International Conference (IPMI’93), Flagstaff, AZ, June, 1993, Lectures Notes in Computer Science, pp. 48–61. Springer, Berlin (1993)

  36. Terzopoulos D., Fleischer K.: Deformable models. Visual Comp 4(6), 306–331 (1988)

    Article  Google Scholar 

  37. Bakoš, M.: Active contour and their utilization at image segmentation. In: 5th Slovakian-Hungarian Joint symposium on applied machine intelligence and informatics, Poprad, Slovakia (2007)

  38. Li, C.; Xu, C.; Gui, C.; D. Fox, M.: Level set evolution without re-initialization: a new variational formulation. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer vision and Patern Recognition. (2005)

  39. Zhang, H.; Morrow, P.; McClean, S.; Saetzler, K.: Contour Detection of Labelled Cellular Structures from Serial Ultrathin Electron Microscopy Sections using GAC and Prior Analysis. In: First International Workshops on Image Processing Theory, Tools and Applications (IPTA’08), 23–26 Nov 2008, pp. 1–7. (2008)

  40. Caselles, V.; Kimmel, R.; Sapiro, G.: Geodesic active contours. Int. J. Comp. Vis., 22, 61–79 (1997)

    Google Scholar 

  41. Caro, A.; Alonso, T.; Rodríguez, P.G.; Durán, M.L.; Ávila, M.M.: Testing Geodesic Active Contours. In: Martí, J. et al. (eds.): IbPRIA 2007, Part II, LNCS 4478, pp 64–71 (2007)

  42. http://math.berkeley.edu/~sethian/2006/Applications/Medical_Imaging/artery.html, Copyright: 1996, 1999, 2006 J.A. Sethian

  43. Gonzalez, R.C.; Woods, R.E.: Digital Image Processing, 3rd edn, pp. 264–266. Pearson Prentice Hall, Englewood Cliffs (2008)

  44. Amini, A.A.; Weymouth, T.E.; Jain, R.C.; Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867 (1990)

    Google Scholar 

  45. McInerney, T.; Terzopoulos, D.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comp. Med. Imag. Graph., 19(1), 69–83 (1995)

    Google Scholar 

  46. Caselles, V.; Catte, F.; Coll, T.; Dibos, F.: A geometric model for active contours. Numerische Math. 66, 1–31 (1993)

    Google Scholar 

  47. Malladi, R.; Sethian, J.A.; Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern. Anal. Mach. Intell. 17(2), 158–175 (1995)

    Google Scholar 

  48. Caselles, V.; Kimmel, R.; Sapiro, G.: Geodesic active contours. In: Proceedings pf 5th International Conference Computer Vision, pp. 694–699 (1995)

  49. Whitaker, R.T.: Volumetric deformable models: active blobs. Tech. Rep. ECRC-94- 25, European Computer-Industry Research Centre GmbH (1994)

  50. Xu, C.; Pham, D.L.; Prince, J.L.: Medical Image Segmentation Using Deformable Models. In: Fitzpatrick, J.M., Sonka, M. (eds.) SPIE Handbook Medical Imaging, vol III: Medical Image Analysis. SPIE, Bellingham (2000)

  51. http://fas.sfu.ca/ , Blair Mackiewich, Sat Aug 19 16:59:04 PDT 1995

  52. Osher, S.; Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1998)

    Google Scholar 

  53. Sethian J.A.: Curvature and the Evolution of Fronts. Comm. Math. Phys. 101, 487–499 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sethian, J.A.: A review of recent numerical algorithms for hyper surfaces moving with curvature dependent speed. J. Diff. Geometry 31, 131–161 (1989)

    Google Scholar 

  55. Bakoš, M.: Active contour and their utilization at image segmentation, 5th Slovakian-Hungarian Joint symposium on applied machine intelligence and informatics, Poprad, Slovakia (2007)

  56. Graps, A.: An introduction to wavelets. IEE Comput. Sci. Eng. 2, 50–61 (1995)

  57. Akay, M.: Biomedical Signal Processing. Academic Press Inc., Dublin (1994)

  58. Rafiee, J.; et al.: Wavelet basis functions in biomedical signal processing. Expert Syst. Appl. (2010). doi:10.1016/j.eswa.2010.11.050

  59. Ray, N.; Chanda, B.; Das, J.: A fast and flexible multiresolution snake with a definite termination criterion. Pattern Recogn. 34, 1483–1490 (2001)

    Google Scholar 

  60. Mignotte, M.; Meunier, J.: A multiscale optimization approach for the dynamic contour-based boundary detection issue. Comp. Med. Imaging Graphics 25, 265–275 (2001)

    Google Scholar 

  61. Chucherd, S.; Rodtook, A.; Makhanov, S.S.: Phase portrait analysis for multiresolution generalized gradient vector flow. IEICE Trans. Inform. Syst. E93-D(10), 2822–2835 (2010)

    Google Scholar 

  62. Chan, T. F.; Vese, L. A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif M. S. Al Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Sharif, S.M.S., Deriche, M., Maalej, N. et al. A Fast Geodesic Active Contour Model for Medical Image Segmentation Using Prior Analysis and Wavelets. Arab J Sci Eng 39, 1017–1037 (2014). https://doi.org/10.1007/s13369-013-0664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0664-4

Keywords

Navigation