Skip to main content
Log in

Iterative Projective Gabor Method for Images Filtering

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a method for de-noising images by thresholding Gabor transforms recursively. A new localized estimation of the noise standard deviation is obtained. It is shown that the algorithm converges globally using a few number of iterations. Experimental results show a remarkable improvement compared with the wavelet based de-noising methods (SureShrink and BayesShrink).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirakawa K., Parks T.: Image denoising using total least squares. IEEE Trans. Image Process. 15, 2730–2742 (2006)

    Article  Google Scholar 

  2. Burgeth B., Didas S., Florack L., Weickert J.: A generic approach to diffusion filtering of matrix fields. Computing 81, 179–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schevnders, P., De Backer, S.: Wavelet denoising multi-component image using a Gaussian scale mixture model. In: Proceedings of the IEEE International Conference on Pattern Recognitions ICPR, Hong Kong, vol.~3, pp. 754–757 (2006)

  4. Bisih N., Thanh N.: Object detection of speckle image based on curvelet transform. ARPN J. Eng. Appl. Sci. 2, 14–16 (2007)

    Google Scholar 

  5. Chaux C., Duval L., Benyahia A., Pesquest J.: A nonlinear stein based estimator for multichannel image denoising. IEEE Trans Signal Process. 56, 3855–3870 (2008)

    Article  MathSciNet  Google Scholar 

  6. Raphan M., SimonCelli E.: Optimal denoising in redundant representations. IEEE Trans. Image Process. 17, 1342–1352 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bastiaans M.: Gabor’s expansion of a signal into Gaussian elementary signals. Proc. IEEE 68, 594–598 (1980)

    Article  Google Scholar 

  8. Feichtinger, H., Srohmer, T. (eds.): Gabor Analysis and Algorithms. Birkauser, Boston (1998)

  9. Grochenig K.: Foundation of time- frequency analysis. Birkauser, Boston (2001)

    Google Scholar 

  10. Tao D., Li X., Wu X., Maybank S.: General tensor discriminant analysis and Gabor features for Gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  11. Senapati S., Chakroboty S., Saha G.: Speech enhancement by joint characterization in log Gabor wavelet domain. Speech Commun. 50, 504–518 (2008)

    Article  Google Scholar 

  12. Kong, A.: An alternative Gabor filtering scheme. IEEE 17th International Conference on Image Processing, pp. 1925–1928 (2010)

  13. Lee T.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (1996)

    Article  Google Scholar 

  14. Bo, F., Zhi, H., Zheng, L.: A novel enhancement method based on Gabor filtering. Image and Signal Processing, CISP’09, 2nd International Congress on Digital Object Identifier, pp. 1–5 (2009)

  15. Young I., Vliet L., Ginkel M.: Recursive Gabor filtering. IEEE Trans. Signal Process. 50, 2798–2805 (2002)

    Article  Google Scholar 

  16. Zhou, Y., Zheng, Y.: Enhancement of muscle fibers in ultrasound images using Gabor filters. Ultrasonics Symposium (IUS), 2009 IEEE International Digital Object Identifier, pp. 2296–2299 (2009)

  17. Yu W., Sommer G., Daniilidis K., Duncan J.: Using skew Gabor filter in source signal separation and local spectral orientation analysis. Image Vision Comput. 32, 377–392 (2005)

    Article  Google Scholar 

  18. Daubechies I.: The wavelet transform, time frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1004 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Walker, J., Chen, Y.: Denoising Gabor transforms. Reprint, available at: http://www.uwec.edu/walkerjs/media/DGT.pdf

  20. Fletcher, A., Ramchandran, K., Gayol, V.: Wavelet denoising by recursive cycle spinning. In: Proceedings of the IEEE International Conference on Image Processing, Rochester, vol. 2, pp. 873–876 (2002)

  21. Cheng, X., Hart, J., Walker, J., Chen, Y.: Time–Frequency Analysis of Musical Rhythm. Notices of the American Mathematical Society, vol. 56, No. 3, pp. 356–372 (2009)

  22. Donoho D., Johnstone I.: Adapting to unknown smoothness via wavelet shrinkage. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chipman H., Kolaczyk E., Mcculloch R.: Adaptive Bayesian wavelet shrinkage. J. Am. Stat. Assoc. 92, 1413–1421 (1997)

    Article  MATH  Google Scholar 

  24. Stein C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151 (1981)

    Article  MATH  Google Scholar 

  25. Coifman, R., Donoho, D.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Springer, Berlin (1995)

  26. Chang S., Yu B., Vetterli M.: Spatially adaptive wavelet thresholding with context modeling for image de-noising. IEEE Trans. Image Proc. 9, 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smart D.: Fixed Point Theorems. Cambridge University press, Cambridge (1974)

    MATH  Google Scholar 

  28. Kreysizig E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Nabil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabil, T. Iterative Projective Gabor Method for Images Filtering. Arab J Sci Eng 38, 2745–2753 (2013). https://doi.org/10.1007/s13369-012-0489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0489-6

Keywords

Navigation