Skip to main content
Log in

Steady MHD Flow of a Dusty Incompressible Non-Newtonian Oldroyd 8-Constant Fluid in a Circular Pipe

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The steady magneto-hydrodynamic flow of a dusty incompressible electrically conducting and non- Newtonian Oldroyd 8-constant fluid through a circular pipe is examined considering the Hall effect. A constant pressure gradient is imposed in the axial direction of the pipe while an external uniform magnetic field is applied in the perpendicular direction. A numerical solution for the governing nonlinear momentum equations is obtained using the method of finite differences. The effect of the Hall current, the non-Newtonian fluid characteristics and the particle-phase viscosity on the velocity, the volumetric flow rates, and the skin friction coefficients of both the fluid and the particle phases is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Viscosity ratio

B o :

Magnetic induction (kg s−2 A−1)

Ha :

Hartmann number

J :

Current density (A m−2)

K :

Stokes constant (kg s−1)

p :

Pressure gradient (kg m−2 s−2)

m :

Hall parameter

N :

Number of dust particles per unit volume (m−3)

V :

Velocity component of the fluid phase (m s−1)

V p :

Velocity component of the particle phase (m s−1)

r :

Radial direction (m)

z :

Axial direction (m)

μ :

Viscosity of the fluid (kg m−1 s−1)

μ p :

Viscosity of the dust particles (kg m−1 s−1)

ρ :

Density of the fluid

ρ p :

Mass of dust particles per unit volume of the fluid (kg m−3)

σ :

Electrical conductivity of the fluid (m−2 kg−1 s3 A2)

λ i :

Material parameters (i = 1–7)

α :

Inverse Stokes number

β :

Hall factor

References

  1. Soo S.L.: Pipe flow of suspensions. Appl. Sci. Res. 21, 68–84 (1969)

    Article  Google Scholar 

  2. Sutton G.W, Sherman A: Engineering Magnetohydrodynamics. McGraw-Hill, New York (1965)

    Google Scholar 

  3. Gidaspow D.: Hydrodynamics of fluidization and heat transfer: super computer modeling. Appl. Mech. Rev. 39, 1–23 (1986)

    Article  Google Scholar 

  4. Grace, J.R.: Fluidized-bed hydrodynamic. In: Hetsoroni, G. (ed.) Handbook of Multiphase Systems, chap. 8.1. McGraw-Hill, New York (1982)

  5. Sinclair J.L, Jackson R: Gas-particle flow in a vertical pipe with particle–particle interactions. AICHE J 35, 1473–1486 (1989)

    Article  Google Scholar 

  6. Gadiraju M, Peddieson J, Munukutla S: Exact solutions for two-phase vertical pipe flow. Mechanics Res. Commun. 19(1), 7–13 (1992)

    Article  MATH  Google Scholar 

  7. Dube S.N, Sharma C.L: A note on unsteady flow of a dusty viscous liquid in a circular pipe. J. Phys. Soc. Jpn. 38(1), 298–310 (1975)

    Article  Google Scholar 

  8. Ritter, J.M.; Peddieson, J.: “Transient two-phase flows in channels and circular pipes”, Proc. 1977 the Sixth Canadian Congress of Applied Mechanics”, (1977)

  9. Chamkha A.J.: Unsteady flow of a dusty conducting fluid through a pipe. Mechanics Res. Commun. 21(3), 281–286 (1994)

    Article  MATH  Google Scholar 

  10. Yoon S.H, Oh C, Choi J.H: A study of the heat transfer characteristics of a self-ocillating heat pipe. KSME Int. J. 16(3), 354–362 (2002)

    Google Scholar 

  11. Kim D.: Improved convective heat transfer correlations for two-phase two-component pipe. KSME Int. J. 16(3), 403–422 (2002)

    Google Scholar 

  12. Kim W.T, Hong K.H, Jhon M.S, VanOsdol J.G, Smith D.H: Forced convection in a circular pipe with a partially filled porous medium. KSME Int. J. 17(10), 1583–1596 (2003)

    Google Scholar 

  13. Nakayama A, Koyama H: An analysis for friction and heat transfer characteristics of power-law non-Newtonian fluid flows past bodies of arbitrary geometrical configuration. Warme-und Stoffubertragung 22, 29–37 (1988)

    Article  Google Scholar 

  14. Hayat T, Khan M, Asghar S: Homotopy analysis of MHD flows of an Oldroyd8-constant fluid. Acta Mechanica 168, 213–232 (2004)

    Article  MATH  Google Scholar 

  15. Khan M, Hayat T, Ayub M: Numerical study of partial slip on the MHD flow of an Oldroyd8-constant fluid. Comput. Math. Appl. 53(7), 1088–1097 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khan M, Hayat T, Wang Y: Slip effect on shearing flows in a porous medium. Acta Mechanica Sinica 24, 51–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khan M, Quarrat-ul M, Sajid M: Heat transfer analysis of the steady flow of an Oldroyd8-constant fluid due to suddenly moved plate. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1347–1355 (2011)

    Article  MATH  Google Scholar 

  18. Crammer K.R, Pai S.-I: Magnetofluid dynamics for engineers and applied physicists. McGraw-Hill, New York (1973)

    Google Scholar 

  19. Massoudi M.: Constitutive relations for the interactions force in multicomponent particulate flows. Int. J. Non-Linear Mech. 38, 313–336 (2006)

    Article  Google Scholar 

  20. Davidson J.F, Clift R, Harrison D: Fluidization, 2nd edn. Academic Press, Orlando (1985)

    Google Scholar 

  21. Gidaspow D.: Multiphase Flow and Fluidization. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  22. Fan L.S, Zhu C: Principles of Gas–Solid Flows. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  23. Marcus R.D, Leung L.S, Klinzing G.E, Rizk F: Pneumatic Conveying of Solids. Chapman & Hall, London (1990)

    Book  Google Scholar 

  24. Govier G.W, Aziz K: The Flow of Complex Mixtures in Pipes. Krieger Publishing Company, Malabar (1982)

    Google Scholar 

  25. Ungarish M.: Hydrodynamics of Suspensions. Springer, New York (1993)

    Book  Google Scholar 

  26. Roco M.C.: Particulate Two-Phase Flow. Butterworth-Heiman, Boston (1993)

    Google Scholar 

  27. Truesdell, C.: Sulle basi della thermomeccanica, Rand Lincei, Ser., (1957)

  28. Atkin R.J, Craine R.E: Continuum theories of mixtures: basic theory and historical development. Quart. J. Mech. Appl. Math. 29(2), 209–244 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rajagopal K.R, Tao L: Mechanics of Mixtures. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  30. Tao L, Humphrey J.D, Rajagopal K.R: Int. J. Eng. Sci. 39, 1535–1556 (2001)

    Article  Google Scholar 

  31. Rajagopal, K.R, Tao, L: ZAMP 53, 923–948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, G.; Massoudi, M.; Rajagopal, K.R.: A review of interaction mechanisms in fluid–solid flows. DOE Report, DOE/PETC/TR-90/9, Pittsburgh (1990)

  33. Khan M, Sajid M, Ayub M: Steady flow of an Oldroyd8-constant fluid between coaxial cylinders in a porous medium. J. Porous Media 9(8), 709–722 (2006)

    Article  Google Scholar 

  34. Evans G.A, Blackledge J.M, Yardley P.D: Numerical Methods for Partial Differential Equations. Springer Verlag, New York (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa A. M. Abdeen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attia, H.A., Abdeen, M.A.M. Steady MHD Flow of a Dusty Incompressible Non-Newtonian Oldroyd 8-Constant Fluid in a Circular Pipe. Arab J Sci Eng 38, 3153–3160 (2013). https://doi.org/10.1007/s13369-012-0475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0475-z

Keywords

Navigation