Skip to main content
Log in

An analysis for friction and heat transfer characteristics of power-law non-Newtonian fluid flows past bodies of arbitrary geometrical configuration

Eine Analyse der Reibung und des Wärmeübergangs in Strömungen strukturviskoser, nicht Newtonscher Fluide hinter Körpern verschiedener Geometrien

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A general integral solution procedure has been suggested for the analysis of the forced convective heat transfer to the power-law-non-Newtonian fluids from bodies of arbitrary geometrical configuration. Both the free stream velocity and wall temperature are allowed to vary in arbitrary fashion. The set of governing equations has been eventually reduced to a pair of characteristic equations: one first order ordinary differential equation and another integral equation, which can readily be solved, once the power-law exponent, body geometry, external velocity distribution and wall temperature distribution are specified. Comparison of the calculated results with available experimental data and series expansion solutions suggests an excellent performance of the present approximate solution procedure.

Zusammenfassung

Es wird eine generelle Methode für eine integrale Lösung zur Analyse des Wärmeübergangs bei Zwangskonvektion für strukturviskose, nicht Newtonsche Fluide vorgeschlagen, die Körper unterschiedlicher geometrischer Konfiguration umströmen. Sowohl die Freistrahlgeschwindigkeit als auch die Wandtemperatur können beliebig variieren. Der die Vorgänge beschreibende Gleichungssatz wurde schließlich auf ein Paar charakteristische Gleichungen reduziert, nämlich eine gewöhnliche Differentialgleichung erster Ordnung und eine Integralgleichung, die sofort gelöst werden können, wenn der Exponentialansatz für das strukturviskose Verhalten die Geometrie des umströmten Körpers, die Verteilung der Anströmgeschwindigkeit und die Verteilung der Wandtemperatur spezifiziert sind. Ein Vergleich der berechneten Ergebnisse mit verfügbaren Messungen und anderen Lösungen zeigt ein ausgezeichnetes Verhalten der vorliegenden Näherungslösungs-Methode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C, D, E, G, H :

boundary layer shape factors

Cfx :

local skin friction coefficient

Cp :

specific heat

f,ft :

velocity and temperature profiles

I, It :

functions associated with the deviation from unity

k :

thermal conductivity

K :

multiplicative constant in the power-law model

m :

function describing the external flow velocity

mt :

exponent for the wall temperature variation

n :

power-law exponent

Nux :

local Nusselt number

Prx :

Prandtl number

Rex :

Reynolds number

T, Δ Tw :

temperature, and wall-ambient temperature difference

u, v :

velocity components in thex andy directions

x, y :

boundary layer coordinates

δ, δt :

viscous and thermal boundary layer thicknesses

ζ :

boundary layer thickness ratio

η, ηt :

dimensionless variable in they direction

Λ :

shape factor associated with the curvature off at the wall

ξ :

shape factor associated with the boundary layer thickness

e :

boundary layer edge

t :

thermal boundary layer

w :

wall

References

  1. Metzner, A. B.: Heat transfer in non-Newtonian fluids. Adv. Heat Transfer (1965) 357–397

  2. Metzner, A. B.: Advances in chemical engineering. New York: Academic Press 1956

    Google Scholar 

  3. Acrivos, A.; Shah, M. J.; Petersen, E. E.: Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surfaces. AIChE J. 6 (1960) 312–317

    Google Scholar 

  4. Schowalter, W. R., The application of boundary layer theory to power-law pseudoplastic fluids: Similar solutions. AIChE J. vol. 6 (1960) 24–28

    Google Scholar 

  5. Lee, S. Y.; Ames, W. F.: Similarity solutions for non-Newtonian fluids. AIChE J. 12 (1966) 700–708

    Google Scholar 

  6. Wolf, C. J.; Szewcyzk, A A.: Laminar heat transfer to powermodel non-Newtonian fluids from arbitrary cylinders. Proc. 3rd Int. Heat Transfer Conf. Chicago, Illinois 1966

  7. Serth, R. W.; Kiser, K. M.: A solution of the two dimensional boundary layer equations for an Ostwald-de Waele fluid. Chem. Eng. Sci. (1967) 245–256

  8. Lighthill, M. J.: Contributions to the theory of heat transfer through a laminar boundary layer. Proc. R. Soc. London 202A (1950) 359–377

    Google Scholar 

  9. Shah, M. J.; Petersen, E. E.; Acrivos, A. M.: Heat transfer from a cylinder to a power-law non-Newtonian fluid. AIChE J. (1962) 542–549

  10. Lin, F. N.; Chern, S. Y.: Laminar boundary layer flow of non-Newtonian fluid. Int. J. Heat Mass Transfer 22 (1979) 1323–1329

    Google Scholar 

  11. Kim, H. W.; Jeng, D. R.; DeWitt, K. J.: Momentum and heat transfer in power-law fluid flow over two-dimensional or axisymmetric bodies. Int. J. Heat Mass Transfer 26 (1983) 45–259

    Google Scholar 

  12. Merk, H. J.: Rapid calculation for boundary-layer transfer using wedge solutions and asymptotic expansions. J. Fluid Mech. (1959) 460–480

  13. Chao, B. T.: An improved Lighthill's analysis of heat transfer through boundary layers. Int. J. Heat Mass Transfer 15 (1972) 907–920

    Google Scholar 

  14. Chao, B. T.; Fagbenle, R. O.: On Merk's method of calculating boundary layer transfer. Int. J. Heat Mass Transfer vol. 17 (1974) pp. 223–240

    Google Scholar 

  15. Brizzell, G. D.; Slattery, J. C.: Non-Newtonian boundary layer flow. Chem. Engrg. Sci. 17 (1962) 777–782

    Google Scholar 

  16. Nakayama, A.; Koyama, H.; Ohsawa, S.: An approximate solution procedure for laminar free and forced convection heat transfer problems. Int. J. Heat Mass Transfer 26 (1983) 1721–1726

    Google Scholar 

  17. Nakayama, A.; Shenoy, A. V.; Koyama, H.: An analysis for forced convection heat transfer from external surfaces to non-Newtonian fluids, Wärme-Stoffübertrag. 20 (1986) 219–227

    Google Scholar 

  18. Nakayama, A.; Koyama, H.: An integral treatment of laminar and turbulent film condensation on bodies of arbitrary geometrical configuration. J. Heat Transfer 107 (1985) 417–423

    Google Scholar 

  19. Nakayama, A.; Koyama, H.: An integral method in laminar film pool boiling from curved surfaces. J. Heat Transfer (in press)

  20. Hartree, D. R.: On an equation occurring in Falkner and Skan's approximate treatment of the equation of the boundary layer. Proc. Camb. Phil. Soc. (1937) 223–239

  21. Schmidt, E.; Wenner, K.: Wärmeabgabe über den Umfang eines angeblasenen geheizten Zylinders. Forsch. Geb. Ing. 12 (1941) 65–73

    Google Scholar 

  22. Hiemenz, K.: Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Thesis Göttingen 1911. Dingl. Polytechn. J. 326 (1911)

  23. Slattery, J. C.; Bird, R. B.: Non-Newtonian flow past a sphere, Chem. Eng. Sci. 16 (1961) pp. 231–241

    Google Scholar 

  24. Huang, M. J.; Chen, C. K.: Numerical analysis for forced convection over a flat plate in power-law fluids. Int. Comm. Heat Mass Transfer 11 (1984) 361–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, A., Koyama, H. An analysis for friction and heat transfer characteristics of power-law non-Newtonian fluid flows past bodies of arbitrary geometrical configuration. Wärme- und Stoffübertragung 22, 29–36 (1988). https://doi.org/10.1007/BF01001569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01001569

Keywords

Navigation