Skip to main content
Log in

Meshless EFG Simulation of Linear Elastic Fracture Propagation Under Various Loadings

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We used computational mechanics consisting of various numerical methods to analyze different problems under various boundary conditions. The main advantage of the element free Galerkin (EFG) method is that the model meshing stage is not required and the nodal points are distributed throughout the model domain instead of being meshed. Nodal points are distributed within the model domain to capture a stress singularity around the crack tip. In this paper, various 2D problems in the field of linear elastic fracture mechanics were analyzed to validate the accuracy of the EFG code that was developed in a Matlab environment. To simulate the fracturing process based on the maximum hoop stress criterion, stress intensity factors and the angle of crack propagation were calculated under different loading conditions and the crack trajectory was determined. The obtained results of the developed EFG-code were compared with available experimental data and other numerical (boundary element method and finite element method) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(σ θ max):

Maximum hoop stress

(G max):

Maximum energy release rate

(S θ max):

Strain energy density factor

K I , K II :

Stress intensity factors for mode-I and mode-II

θ C , θ 0 :

Angle of crack propagation

β :

Angle of crack inclination

a :

Half crack length

w I :

Weight function of node I

d I :

Support size of node I

x I :

Coordinate vector of node I

n i , n j :

Number of nodes are i, j directions

r :

Normalized radius

Ω:

Domain of problem geometry

Γ:

Global boundary

Γ u :

Displacement boundary condition

Γ t :

Traction boundary condition

u :

Displacement vector

\({\bar{\bf u}}\) :

Prescribed boundary displacement

b :

Vector of body forces

\({\bar{t}}\) :

Prescribed boundary tractions

λ:

Lagrangian multiplier

\({\Phi}^{\mathbf T}\) :

Shape functions matrix

B :

Strain–displacement relationship matrix

N :

Lagrange interpolation matrix

D :

Stress–strain relationship matrix

f :

Force vector

K :

Stiffness matrix

G :

Transition matrix

E :

Young’s modulus

ν :

Poisson’s ratio

σ T :

Stress applied in infinite

L :

Model length

D :

Model width

t :

Model thickness

References

  1. Anderson T.L.: Fracture mechanics, Fundamentals and Applications. Department of Mechanical Engineering. Texas A&M University, Texas, USA (1994)

    Google Scholar 

  2. Morozov E.M., Nikishkov G.P.: Use of the finite-element method in fracture mechanics. J. Mater. Sci. 18(4), 299–314 (1983)

    Article  Google Scholar 

  3. Cruse T.A.: Two-Dimensional BIE fracture mechanics analysis. Appl. Math. Model. 2, 287–293 (1978)

    Article  MATH  Google Scholar 

  4. Alshoaibi M., Ariffin A.K.: Finite element simulation of stress intensity factors in elasto-plastic crack growth. J. Zhejiang Univ. Sci. A 7(8), 1336–1342 (2006)

    Article  MATH  Google Scholar 

  5. Phongthanapanich S., Dechaumphai P.: Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Element Anal. Des. 40, 1753–1771 (2004)

    Article  Google Scholar 

  6. Chen Ch. Sh., Ernian P., Amadei B.: Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int. J. Rock Mech. Min. Sci. 35, 195–218 (1998)

    Article  Google Scholar 

  7. Liu GR.: MeshFree Methods Moving Beyond the Finite Element Methods, 1st edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  8. Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ingraffea A.R.: Computational Fracture Mechanics, Encyclopedia of Computational Mechanics, vol. 2, issue no. 11. Wiley, New York (2007)

    Google Scholar 

  10. Belytschko T., Lu Y.Y., Gu L.: Crack propagation by element free Galerkin methods. Eng. Fract. Mech. 51, 295–315 (1995)

    Article  Google Scholar 

  11. Belytschko T., Lu Y.Y., Gu L.: Tabbara, M.: Element free Galerkin methods for static and dynamic fracture. Int. J. Solids Struct. 32, 2547–2570 (1995)

    Article  MATH  Google Scholar 

  12. Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  13. Liew K.M, Feng C, Cheng Y, Kitipornchai S.: Complex variable moving least-squares method: a meshless approximation technique. Int. J. Num. Methods Eng. 120(4), 110–121 (2007)

    MathSciNet  Google Scholar 

  14. Moran B, Shih C.F.: A general treatment of crack tip contour integrals. Eng. Fract. Mech. 35, 295–310 (1987)

    Google Scholar 

  15. Rice J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  16. Li F.Z, Shih C.F, Needleman A.: A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405–421 (1985)

    Article  Google Scholar 

  17. Guinea G.V, Planas J, Elices M.: KI evaluation by the displacement extrapolation technique. Eng. Fract. Mech. 66(3), 243–255 (2000)

    Article  Google Scholar 

  18. Ma F, Deng X, Sutton M.A, Newman J.C.: A CTOD-Based Mixed-Mode Fracture Criterion Mixed-Mode Crack Behavior. ASTM STP 1359, pp. 86–110 (1999)

  19. Andrianopolous N.P, Theocaris P.S.: LEFM brittle and ductile fractures as described by the T-criterion. Eng. Fract. Mech. 30(1), 5–12 (1988)

    Article  Google Scholar 

  20. Kong X.M, Schluter N, Dahl W.: Effect of triaxial stress on mixed-mode fracture. Eng. Fract. Mech. 52(2), 379–388 (1995)

    Article  Google Scholar 

  21. Khan Sh.M.A, Khraisheh M.K.: A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int. J. Plast. 20(1), 55–84 (2004)

    Article  MATH  Google Scholar 

  22. Erdogan F, Sih G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(B7), 519–527 (1963)

    Article  Google Scholar 

  23. Nuismer R.J.: An energy release rate criterion for mixed mode fracture. Int. J. Fract. 11(2), 245–250 (1975)

    Article  Google Scholar 

  24. Sih G.C.: Strain–energy–density factor applied to mixed-mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Article  Google Scholar 

  25. Dillard D.A, Pocius A.V, Chaudhury M.: Adhesion Science and Engineering, vol. 1. The Mechanics of Adhesion, vol. 11, issue no. 1.2. Elsevier, Amsterdam (2002)

    Google Scholar 

  26. Beissel S, Belytschko T.: Nodal Integration of the Element-free Galerkin Method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dolbow J, Belytschko T.: An introduction to programming the meshless element free galerkin method. Arch. Comput. Methods Eng. 5(3), 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  28. Mukhrejee Y.X, Mukhrejee S.: On boundary conditions in the element-free Galerkin method. Comput. Mech. 19(4), 264–270 (1997)

    Article  MathSciNet  Google Scholar 

  29. Fleming M, Chu Y.A, Moran B, Belytschko T, Lu Y.Y, Gu L.: Enriched element-free galerkin methods for crack-tip fields. Int. J. Numer. Methods Eng 40, 280–314 (1997)

    Article  Google Scholar 

  30. Rao B.N, Rahman S.: A coupled meshless-finite element method for fracture analysis of cracks. Int. J. Press. Vessels Piping. 78(9), 647–657 (2001)

    Article  Google Scholar 

  31. Tada H, Paris P.C, Irwin G.R.: The Stress Analysis of Cracks Handbook. ASME Press, New York (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Salari-Rad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salari-Rad, H., Rahimi-Dizadji, M., Rahimi-Pour, S. et al. Meshless EFG Simulation of Linear Elastic Fracture Propagation Under Various Loadings. Arab J Sci Eng 36, 1381–1392 (2011). https://doi.org/10.1007/s13369-011-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0125-x

Keywords

Navigation