Skip to main content
Log in

Electric Dipole Transitions for Lu I (Z = 71)

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain a description of the neutral lutetium spectrum. We calculated the radiative parameters (wavelengths, weighted oscillator strengths and transition probabilities) for electric dipole (E1) transitions for some excited levels in neutral lutetium (Lu I, Z = 71). Two configuration interaction methods were used: the multiconfiguration Hartree–Fock method developed by Fischer within the Breit-Pauli relativistic framework (MCHF + BP), and Cowan’s relativistic Hartree–Fock (HFR) method. Results obtained have been compared with each other and with other works. A discussion of these calculations for Lu I in this study has also been in view of the MCHF + BP and HFR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, W.C.; Zalubas, R.; Hagan, L.: Atomic Energies Levels-The Rare-Earth Elements. NSRDS-NBS Circular No 60. U.S., Washington, DC (1978)

  2. Fedchak J.A., Den Hartog E.A., Lawler J.E., Palmeri P., Quinet P., Biémont E.: Experimental and theoretical radiative lifetimes, branching fractions, and oscillator strengths for Lu I and experimental lifetimes for Lu II and Lu III. Astrophys. J. 542, 1109–1118 (2000)

    Article  Google Scholar 

  3. Cowan, R.D.: The Theory of Atomic Structure and Spectra. California, USA (1981)

  4. Meggers W.F., Scribner B.F.: Regularities in the spectra of lutetium. J. Res. Nat. Bur. Stand. 5, 73–81 (1930)

    Google Scholar 

  5. King A.S.: Temperature classification of the spectra of ytterbium and lutetium. Astrophys. J. 74, 328–341 (1931)

    Article  Google Scholar 

  6. Meggers W.F.: Atomic spectra of rare earth elements. Rev. Mod. Phys. 14, 96–103 (1942)

    Article  Google Scholar 

  7. Klinkenberg P.F.A.: Analysis of the arc spectrum of lutetium. Physica. 21, 53–62 (1954)

    Article  Google Scholar 

  8. Pinnington E.H.: Zeeman effect analysis of the neutral spectrum of lutecium. Can. J. Phys. 41, 1294–1304 (1963)

    Article  Google Scholar 

  9. Göbel L.H.: Double resonance investigation in excited states of Lu I. Z. Naturf. A 25, 1401–1405 (1970)

    Google Scholar 

  10. Camus P., Tomkins F.S.: Absorption-line series in Lu I. J. Phys. France. 33, 197–201 (1972)

    Article  Google Scholar 

  11. Camus P., Masmoudi K.: Etude théorique des configurations 5d6s6p + 6s27p + 5f6s2 + 5d26p de Lu I. Physica 60, 513–520 (1972)

    Article  Google Scholar 

  12. Vergés J., Wyart J.F.: Infrared emission spectrum of lutecium and extended analysis of Lu I. Phys. Scr. 17, 495–499 (1978)

    Article  Google Scholar 

  13. Kwiatkowski M., Teppner U., Zimmermann P.: Laser spectroscopic investigations in the configuration 5d6s6p of Lu I. Z. Naturf. A. 35, 370–372 (1980)

    Google Scholar 

  14. Vidolova-Angelova E.P., Ivanov L.N., Letokhov V.S.: Application of model potential method in calculating Rydberg states of rare-earth elements Tm, Yb, Lu and their ions. J. Phys. B At. Mol. Phys. 15, 981–991 (1982)

    Article  Google Scholar 

  15. Vidolova-Angelova E.: Energies and radiation lifetimes of high lying Rydberg states of lutetium. J. Phys. B At. Mol. Phys. 25, 3735–3746 (1992)

    Article  Google Scholar 

  16. Vidolova-Angelova E.P., Angelov D.A., Krustev T.B., Mincheva S.T.: Investigation of lutetium Rydberg states by laser multistep resonance ionization spectroscopy. Z. Phys. D. 23, 215–218 (1992)

    Article  Google Scholar 

  17. Gorshkov V.N., Komarovskii V.A., Penkin N.P.: Lifetimes of atomic lutetium excited-states. Opt. Spektrosk. 56, 939–940 (1984)

    Google Scholar 

  18. Blagoev K.B., Komarovskii V.A.: Lifetimes of levels of neutral and singly ionized Lanthanide Atoms. At. Data Nucl. Data Tables 56, 1–40 (1994)

    Article  Google Scholar 

  19. Doidge P.S.: A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis. Spectrochim. Acta B 50, 209–263 (1995)

    Article  Google Scholar 

  20. Doidge P.S.: Erratum to “A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis” [Spectrochimica Acta Part B, 50 (1995) 209]. Spectrochim. Acta B 50, 1421–1422 (1995)

    Article  Google Scholar 

  21. Doidge P.S.: Erratum to “A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis. Spectrochim. Acta B 51, 375 (1996)

    Article  Google Scholar 

  22. Tatewaki H., Sekiya M., Sasaki F., Matsuoka O., Koga T.: 6s and 4f ionized states of the lanthanides calculated by numerical and analytical Hartree–Fock methods. Phys. Rev. A 51, 197–203 (1995)

    Article  Google Scholar 

  23. Sekiya M., Sasaki F., Tatewaki H.: 6s and 4f ionized states of lanthanide calculated by the configuration-interaction method. Phys. Rev. A 56, 2731–2740 (1997)

    Article  Google Scholar 

  24. Eliav E., Kaldor U., Ishikawa Y.: Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method. Phys. Rev. A 52, 291–296 (1995)

    Article  Google Scholar 

  25. Zou Y., Fischer C.F.: Resonance transition energies and oscillator strengths in lutetium and lawrencium. Phys. Rev. Lett. 88, 183001–183004 (2002)

    Article  Google Scholar 

  26. Dai Z.-W., Jiang Z.-K., Xu H.-L., Zhang Z.-G., Svanberg S., Biémont E., Lefèbvre P.H., Quinet P.: Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory. J. Phys. B At. Mol. Phys. 36, 479–487 (2003)

    Article  Google Scholar 

  27. Maeda H., Mizugai Y., Matsumoto Y., Suzuki A., Takami M.: Highly excited even Rydberg series of Lu I studied by two-step laser photoionisation spectroscopy. J. Phys. B At. Mol. Phys. 22, L511–L516 (1989)

    Article  Google Scholar 

  28. Maeda H., Matsuo Y., Takami M.: Optical and microwave study of a very weak perturbation in high Rydberg states of lutetium. Phys. Rev. A 47, 1174–1180 (1993)

    Article  Google Scholar 

  29. Xu C.B., Xu X.Y., Ma H., Li L.Q., Huang W., Chen D.Y., Zhu F.R.: The study of autoionizing states of lutetium atoms by resonance ionization spectroscopy. J. Phys. B At. Mol. Phys. 26, 2827–2835 (1993)

    Article  Google Scholar 

  30. Kujirai O., Ogawa Y.: Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy. J. Phys. Soc. Jpn. 67, 1056–1057 (1998)

    Article  Google Scholar 

  31. Kurucz R.L.: Atomic data for interpreting stellar spectra—isotopic and hyperfine data. Phys. Scr. T47, 110–117 (1993)

    Article  Google Scholar 

  32. Horstmann U., Nöldeke G., Steudel A.: Zur feinstruktur des Lu I-spektrums. Ann. Physik 467, 14–19 (1963)

    Article  Google Scholar 

  33. Göbel L.H.: Hyperfine structure investigations of excited states of Lu I by means of the level-crossing method. Z. Naturf. A 26, 611–620 (1970)

    Google Scholar 

  34. Göbel L.H.: Concerning the fine and hyperfine structure of Lu I. Z. Naturf. A 26, 1559–1562 (1971)

    Google Scholar 

  35. Figger H., Wolber G.: Precision measurement of the hyperfine structure of Lu175 with the atomic beam magnetic resonance method. Z. Physik. 264, 95–108 (1973)

    Article  Google Scholar 

  36. Kuhnert A., Nunnemann A., Zimmermann D.: Investigation of the hyperfine structure and isotope shift of the 542.2 nm line of Lu. J. Phys. B At. Mol. Phys. 16, 4299–4303 (1983)

    Article  Google Scholar 

  37. Reddy M.N., Rao G.N.: Hyperfine structure studies of 175Lu by laser optogalvanic spectroscopy. J. Opt. Soc. Am. B 6, 1481–1485 (1989)

    Article  Google Scholar 

  38. Fearey B.L., Parent D.C., Keller R.A., Miller C.M.: Doppler-free saturation spectroscopy of lutetium isotopes through resonance-ionization mass spectrometry. J. Opt. Soc. Am. B 7, 3–8 (1990)

    Article  Google Scholar 

  39. Jin W.G., Wakasugi M., Inamura T.T., Murayama T., Wakui T., Katsuragawa H., Ariga T., Ishizuka T., Koizumi M., Sugai I.: Isotope shift and hyperfine structure in Lu I and W I. Phys. Rev. A 49, 762–769 (1994)

    Article  Google Scholar 

  40. Sansonetti J.E., Martin W.C.: Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005)

    Article  Google Scholar 

  41. Karaçoban B., Özdemir L.: Energies and lifetimes for some excited levels in La I. Acta Phys. Pol. A 113(6), 1609–1618 (2008)

    Google Scholar 

  42. Karaçoban B., Özdemir L.: Electric dipole transitions for La I (Z = 57). J. Quant. Spectrosc. Radiat. Transf. 109, 1968–1985 (2008)

    Article  Google Scholar 

  43. Karaçoban B., Özdemir L.: The hyperfine structure calculations of some excited levels for 139La I. Acta Phys. Pol. A 115(5), 864–872 (2009)

    Google Scholar 

  44. Fischer C.F.: The MCHF atomic-structure package. Comput. Phys. Commun. 128, 635–636 (2000)

    Article  MATH  Google Scholar 

  45. Fischer, C.F.; Brage, T.; Jönsson, P.: Computational atomic structure—an MCHF approach. Bristol (1997)

  46. Karaçoban B., Özdemir L.: Energies and Landé factors for some excited levels in Lu I (Z = 71). Cent. Eur. J. Phys. 9, 800–806 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Özdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaçoban, B., Özdemir, L. Electric Dipole Transitions for Lu I (Z = 71). Arab J Sci Eng 36, 635–648 (2011). https://doi.org/10.1007/s13369-011-0061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0061-9

Keywords

Navigation