Skip to main content
Log in

Rayleigh–Taylor Instability with General Rotation and Surface Tension in Porous Media

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Rayleigh–Taylor instability of a heavy fluid supported by a lighter one is investigated in the presence of general rotation and surface tension through a porous medium. The density in the lower region is assumed to be a decreasing exponential function, while the density in the upper region is an increasing exponential function. The dispersion relation that defines the growth rate N for the considered system has been derived and numerically analyzed for special cases. The results show that N decreases as the vertical and horizontal components of rotation, medium porosity (ε) and viscosity increase. In the general case, only one of the critical values \({(F_{s_c})}\) for the stability is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177 (1882)

    Article  Google Scholar 

  2. Taylor G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  3. Lawrence G.A., Browand F.K., Redekopp L.G.: The stability of a sheared density interface. Phys. Fluids A 3, 2360–2370 (1991)

    Article  MATH  Google Scholar 

  4. Lin S.P.: Breakup of Liquid Sheets and Jets. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  5. Yarin A.L.: Free Liquid Jets and Films: Hydrodynamic and Rheology. Longman Science and Technology, Harlow, Essex (1993)

    Google Scholar 

  6. Masters K.: Spray Drying Handbook, 4th edn. Wiley, New York (1985)

    Google Scholar 

  7. Lefebrve, A.H.: Atomization and Sprays, Hemisphere. New York (1989)

  8. Liao Y., Jeng S.M., Jog M.A., Benjamin M.A.: The effect of air swirl profile on the instability of a viscous liquid jet. J. Fluid Mech. 424, 1–20 (2000)

    Article  MATH  Google Scholar 

  9. Lindl J.D.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas. 2, 3933–4024 (1995)

    Article  Google Scholar 

  10. Sanz J.: Self-consistent analytical model of the Rayleigh–Taylor instability in Inertial Confinement Fusion. Phys. Rev. Lett. 73, 2700–2703 (1994)

    Article  Google Scholar 

  11. Bodner S.: Rayleigh–Taylor instability and Laser-Pellet Fusion. Phys. Rev. Lett. 33, 761–764 (1974)

    Article  Google Scholar 

  12. Sharp D.H.: An overview of Rayleigh–Taylor instability. Phys. 12 D, 3–18 (1984)

    Google Scholar 

  13. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability, chap. X. Oxford University Press, London (1961)

    Google Scholar 

  14. Verma Y.K., Pratibha V.: The Rayleigh–Taylor instability of a rotating compressible inviscid fluid. Indian J. Pure Appl. Math. 29, 316–318 (1963)

    MATH  Google Scholar 

  15. Talwar S.P.: Stability of conducting rotating fluid of variable density. J. Fluid Mech. 9, 581–592 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  16. Verma Y.K., Pratibha V.: The Rayleigh–Taylor instability of a rotating compressible inviscid fluid in the presence of a magnetic field. Indian J. Pure Appl. Math. 29, 319–323 (1963)

    MATH  Google Scholar 

  17. Chakraborty B.B.: Hydromagnetic Rayleigh–Taylor instability of a rotating stratified fluid. Phys. Fluids. 25, 743–747 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gupta J.R., Bhardwaj U.D., Sood S.K.: Rayleigh–Taylor instability with rotation and magnetic field. Indian J. Pure Appl. Math. 16, 73–83 (1985)

    MATH  MathSciNet  Google Scholar 

  19. Ariel P.D.: Rayleigh–Taylor instability of rotating fluid in presence of a vertical magnetic filed. Astrophys. Space Sci. 135, 365–375 (1987)

    Article  MATH  Google Scholar 

  20. Aiyub K., Bhatia P.K.: Gravitational instability of a rotating fluid in an oblique magnetic filed. Phys. Scripta. 47, 230–234 (1993)

    Article  Google Scholar 

  21. Davalos-Orozco L.A.: Rayleigh–Taylor instability of two superposed fluids under imposed horizontal and parallel rotation and magnetic fields. Fluid Dyn. Res. 12, 243–257 (1993)

    Article  Google Scholar 

  22. Chakraborty B.B.: Rayleigh–Taylor instability of a heavy fluid. Phys. Fluids. 18, 1066–1067 (1975)

    Article  MATH  Google Scholar 

  23. Chakraborty B.B., Jyoti Chandra: Rayleigh–Taylor instability in the presence of rotation. Phys. Fluids. 19, 1851–1852 (1976)

    Article  MATH  Google Scholar 

  24. Khater A.H., Obied Allah M.H.: Effect of rotation on Rayleigh–Taylor instability of an accelerating compressible, perfectly conducting plane layer. Astrophys. Space Sci. 106, 245–255 (1984)

    Article  MATH  Google Scholar 

  25. Obied Allah M.H.: Rayleigh–Taylor instability in presence of the rotation. Astrophys. Space Sci. 175, 149–155 (1991)

    Article  MATH  Google Scholar 

  26. El-Ansary N.F., Hoshoudy G.A., Abd-Elrady A.S., Ayyad A.H.A.: Effects of surface tension and rotation on the Rayleigh–Taylor instability. Phys. Chem. Chem. Phys. 4, 1464–1470 (2002)

    Article  Google Scholar 

  27. Dàvalos–Orozco L.A., Aguilar-Rosas J.E.: Rayleigh–Taylor instability of a continuously stratified fluid under a general rotation field. Phys. Fluids. A 1, 1192–1199 (1989)

    Article  MATH  Google Scholar 

  28. Dàvalos–Orozco L.A., Aguilar-Rosas J.E.: Rayleigh–Taylor instability of a continuously stratified magnetofluid under a general rotation field. Phys. Fluids. A 1, 1600–1602 (1989)

    Article  MATH  Google Scholar 

  29. Davalos-Orozco L.A.: Rayleigh–Taylor stability of a two-fluid system under a general rotation field. Dyn. Atmos. Oceans. 23, 247–255 (1996)

    Article  Google Scholar 

  30. Davalos-Orozco L.A.: Rayleigh–Taylor instability of a two-fluid layer under a general rotation field and a horizontal magnetic field. Astrophys. Space Sci. 243, 291–313 (1996)

    Article  MATH  Google Scholar 

  31. Hide R.: The character of the equilibrium of heavy, viscous, incompressible, rotating fluid of variable density: I general theory. Q. J. Mech. Appl. Math. 9, 22–34 (1956)

    Article  MathSciNet  Google Scholar 

  32. Hide R.: The character of the equilibrium of heavy, viscous, incompressible, rotating fluid of variable density: II. Two special cases. Q. J. Mech. Appl. Math. 9, 35–50 (1956)

    Article  MathSciNet  Google Scholar 

  33. Bhatia P.K., Chhonkar R.P.S.: Rayleigh–Taylor instability of two viscous superposed rotation and conducting fluids. Astrophys. Space Sci. 114, 271–276 (1985)

    Article  MATH  Google Scholar 

  34. Oza S., Bhatia P.K.: The Rayleigh–Taylor instability of a stratified rotating fluid through a porous medium in a two-dimensional magnetic field. Astrophys. Space Sci. 199, 279–288 (1993)

    Article  MATH  Google Scholar 

  35. Sharma P.K., Chhajlani R.K.: Effects of rotation on the Rayleigh–Taylor instability of two superposed magnetized conducting plasma. Phys. Plasmas 5, 2203–2209 (1998)

    Article  MathSciNet  Google Scholar 

  36. Obied Allah M.H.: Rayleigh–Taylor instability with surface tension, porous media, rigid planes and exponential densities. Indian J. Pure Appl. Math. 33, 1391–1403 (2002)

    MATH  Google Scholar 

  37. Vaghela D.S., Chhajlani R.K.: Rayleigh–Taylor instability of magnetized partially-ionized superposed fluids with rotation and surface tension in porous medium. Astrophys. Space Sci. 149, 301–312 (1998)

    Article  Google Scholar 

  38. Greenkorn R.A.: Flow Phenomena in Porous Media: Fundamentals and Applications in Petroleum, Water, and Food Production. Marcel Dekker, New York (1984)

    Google Scholar 

  39. Bejan A.: Porous and Complex Flow Structures in Modern Technologies. Springer, Berlin (2004)

    Google Scholar 

  40. Hennenberg M., Saghir M.Z., Rednikov A., Legros J.C.: Porous media and the Bénard-Marangoni problem. Transp. Porous Media 27, 327–355 (1997)

    Article  Google Scholar 

  41. Whitaker S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media. 1, 3–35 (1986)

    Article  Google Scholar 

  42. Lopez De Haro M., Del Rio J.A.P., Whitaker S.: Flow of Maxwell fluids in porous media. Transp. Porous Media. 25, 167–192 (1996)

    Article  Google Scholar 

  43. Del Rio J.A., Whitaker S.: Electrohydrodynamics in porous media. Transp. Porous Media. 44, 385–405 (2001)

    Article  MathSciNet  Google Scholar 

  44. Ness N.F., Acuna M.H., Behannon K.W., Burlaga L.F., Connerney J.E.P., Lepping R.P., Neubauer F.M.: Magnetic fields at Uranus. Science 233, 85–89 (1986)

    Article  Google Scholar 

  45. Ruzmaikin A.A., Starchenko S.V.: Turbulent-dynamo generation of the large-scale magnetic fields of Uranus and Neptune. Kosmicheskie Issledovaniia. 27, 292–298 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Hoshoudy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshoudy, G.A. Rayleigh–Taylor Instability with General Rotation and Surface Tension in Porous Media. Arab J Sci Eng 36, 621–633 (2011). https://doi.org/10.1007/s13369-011-0051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0051-y

Keywords

Navigation