Skip to main content
Log in

A novelty to the nonlinear rotating Rayleigh–Taylor instability

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for studying the nonlinear Rayleigh–Taylor instability (RTI). The system deals with two rotating superposed infinite hydromagnetic Darcian flows through porous media under the influence of a uniform tangential magnetic field. The field allows the presence of currents on the surface of separation. The appropriate linear governing equations are solved and confirmed with the corresponding nonlinear boundary conditions. A nonlinear characteristic of the surface deflection is deducted. Away from the traditional techniques of the stability analysis, the work introduces a new one. The analysis depends mainly on the homotopy perturbation method (HPM). To achieve an analytical approximate periodic solution of the surface deflection, the secular terms are removed. This cancellation resulted in well-known amplitude equations. These equations are utilised to achieve stability criteria of the system. Therefore, the stability configuration is exercised in linear as well as nonlinear approaches. The mathematical procedure adopted here is simple, promising and powerful. The method may be used to treat more complicated nonlinear differential equations that arise in science, physics and engineering applications. A numerical calculation is performed to graph the implication of various parameters on the stability picture. In addition, for more convenience, the surface deflection is depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D J Lewis, Proc. R. Soc. London dynamic A 202(1086), 81 (1950)

    ADS  Google Scholar 

  2. S Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford University Press, Oxford, 1961)

    MATH  Google Scholar 

  3. A R Piriz, J Sanz and L F Ibañez, Phys. Plasmas 4, 1117 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. A R Piriz, O D Cortăzar and J J Lŏpez Cela, Am. J. Phys. 74(12), 1095 (2006)

    Article  ADS  Google Scholar 

  5. A H Nayfeh, J. Appl. Mech. 98, 584 (1976)

    Article  Google Scholar 

  6. A A Mohamed, Y O El-Dib and A A Mady, Chaos Solitons Fractals 14, 1027 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y O El-Dib, J. Magn. Magn. Mater. 260, 1 (2003)

    Article  ADS  Google Scholar 

  8. F A I Dullien, Porous media (Academic Press, New York, 1992)

    MATH  Google Scholar 

  9. H H Bau, Phys. Fluids 25(10), 1719 (1982)

    Article  ADS  Google Scholar 

  10. Y O El-Dib and A Y Ghaly, Chaos Solitons Fractals 18(1), 55 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. R C Sharma and P Kumar, Indian J. Pure Appl. Math. 24(9), 563 (1993)

    Google Scholar 

  12. G M Moatimid, M H Obied Allah and M A Hassan, Phys. Plasmas 20(10), 102111 (2013)

    Article  ADS  Google Scholar 

  13. R E Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  14. R E Zelazo and J R Melcher, J. Fluid Mech. 39(1), 1 (1969)

    Article  ADS  Google Scholar 

  15. S K Malik and M Singh, Q. Appl. Math. 47(1), 59 (1989)

    MathSciNet  Google Scholar 

  16. R Kant and S K Singh, Phys. Fluids 28(2), 3534 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. A R Elhefnawy, Int. J. Theor. Phys. 31(8), 1505 (1992)

    Article  MathSciNet  Google Scholar 

  18. Y O El-Dib, J. Plasma Phys. 51(1), 1 (1994)

    Article  ADS  Google Scholar 

  19. A R F Elhefnawy, M A Mahmoud, M A A Mahmoud and G M Khedr, Can. Appl. Math. Q. 12(3), 323 (2004)

    MathSciNet  Google Scholar 

  20. P K Bhatia and R P Mathur, Z. Naturforsch. 60a, 484 (2005)

  21. S Chandrasekhar, Astrophys. J. 119, 7 (1954), https://doi.org/10.1086/145790

    Article  ADS  MathSciNet  Google Scholar 

  22. M M Scase, K A Baldwin and R J A Hill, Phys. Rev. Fluids 2(2), 024801 (2017)

    Article  ADS  Google Scholar 

  23. P K Sharma, R P Prajapti and R K Chhajlani, Acta Phys. Pol. A 118(4), 576 (2010)

    Article  Google Scholar 

  24. R P Prajapati, Phys. Plasmas 23, 022106 (2016)

    Article  ADS  Google Scholar 

  25. J J Tao, X T He and W H Ye, Phys. Rev. E 87, 013001 (2013)

    Article  ADS  Google Scholar 

  26. Y O El-Dib and A A Mady, J. Comput. Appl. Mech. 49(2), 50 (2018)

    Google Scholar 

  27. J H He, Comput. Method. Appl. Mech. Eng. 178, 257 (1999)

    Article  ADS  Google Scholar 

  28. J H He, Appl. Math. Comput. 151(1), 287 (2004)

    MathSciNet  Google Scholar 

  29. J H He, Int. J. Nonlinear Sci. Numer. Simul. 6(2), 207 (2005)

    MathSciNet  Google Scholar 

  30. Z Ayati and J Biazar, J. Egypt. Math. Soc. 23(2), 424 (2015)

    Article  Google Scholar 

  31. Y O El-Dib, Nonlinear Sci. Lett. A 8(4), 352 (2017)

    Google Scholar 

  32. Y O El-Dib, Pramana – J. Phys. 92: 7 (2019)

    Article  ADS  Google Scholar 

  33. Y O El-Dib and G M Moatimid, Nonlinear Sci. Lett. A 9(3), 220 (2018)

    Google Scholar 

  34. Y Murakami, Phys. Lett. A 131, 368 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. P T Hemamalini and S P Anjali Devi, Fluid Dyn. Mater. Process. 10(4), 491 (2014)

  36. G M Moatimid and D R Mostapha, AIP Adv. 9(5), 055302 (2019)

    Article  ADS  Google Scholar 

  37. J R Melcher, Field coupled surface waves (MIT Press, Cambridge, 1963)

    Google Scholar 

  38. H H Woodson and J R Melcher, Electromechanical dynamics (John Wiley and Sons, New York, 1968)

    Google Scholar 

  39. G K Batchelor, An introduction to fluid dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  40. Y O El-Dib, J. Plasma Phys. 65(1), 1 (2001)

    Article  ADS  Google Scholar 

  41. Y O El-Dib, J. Colloid Interface Sci. 259, 309 (2003)

    Article  ADS  Google Scholar 

  42. G M Moatimid, Y O El-Dib and M H Zekry, Pramana – J. Phys. 92: 22 (2019)

    Article  ADS  Google Scholar 

  43. K A Baldwin, M M Scase and R J A Hill, Sci. Rep. 5, 11706 (2015)

    Article  ADS  Google Scholar 

  44. B Dolai and R P Prajapati, Phys. Plasmas 25, 083708 (2018)

    Article  ADS  Google Scholar 

  45. C Nash and S Sen, Topology and geometry for physicists (Academic Press, London, 1983)

    MATH  Google Scholar 

  46. Y O El-Dib and G M Moatimid, Z. Naturforsch. 57a, 159 (2002)

  47. G M Moatimid and Y O El-Dib, Physica A 333, 41 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusry O El-Dib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dib, Y.O., Moatimid, G.M. & Mady, A.A. A novelty to the nonlinear rotating Rayleigh–Taylor instability. Pramana - J Phys 93, 82 (2019). https://doi.org/10.1007/s12043-019-1844-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1844-x

Keywords

PACS Nos

Navigation