Skip to main content
Log in

Time-dependent viscoelastic properties of Oldroyd-B fluid studied by advection-diffusion lattice Boltzmann method

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Time-dependent viscoelastic properties of Oldroyd-B fluid were investigated by lattice Boltzmann method (LBM) coupled with advection-diffusion model. To investigate the viscoelastic properties of Oldroyd-B fluid, realistic rheometries including step shear and oscillatory shear tests were implemented in wide ranges of Weissenberg number (Wi) and Deborah number (De). First, transient behavior of Oldroyd-B fluid was studied in both start up shear and cessation of shear. Stress relaxation was correctly captured, and calculated shear and normal stresses agreed well with analytical solutions. Second, the oscillatory shear test was implemented. Dynamic moduli were obtained for various De regime, and they showed a good agreement with analytical solutions. Complex viscosity derived from dynamic moduli showed two plateau regions at both low and high De limits, and it was confirmed that the polymer contribution becomes weakened as De increases. Finally, the viscoelastic properties related to the first normal stress difference were carefully investigated, and their validity was confirmed by comparison with the analytical solutions. From this study, we conclude that the LBM with advection-diffusion model can accurately predict time-dependent viscoelastic properties of Oldroyd-B fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aidun, C.K. and J.R. Clausen, 2010, Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech. 42, 439–472.

    Article  Google Scholar 

  • Bird, R.B., C.F. Curtiss, R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids, Vol.2: Kinetic Theory, 2nd ed., Wiley, New York.

    Google Scholar 

  • Boger, D.V., 1977, A highly elastic constant-viscosity fluid, J. Non-Newton. Fluid Mech. 3, 87–91.

    Article  Google Scholar 

  • Denniston, C., E. Orlandini, and J.M. Yeomans, 2001, Lattice Boltzmann simulations of liquid crystal hydrodynamics, Phys. Rev. E 63, 056702.

    Article  Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York.

    Google Scholar 

  • Ginzburg, I., G. Silva, and L. Talon, 2015, Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media, Phys. Rev. E 91, 023307.

    Article  Google Scholar 

  • Giraud, L., D. d’Humières, and P. Lallemand, 1998, A lattice Boltzmann model for Jeffreys viscoelastic fluid, Europhys. Lett. 42, 625–630.

    Article  Google Scholar 

  • Gross, M., T. Krüger, and F. Varnik, 2014, Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects, Soft Matter 10, 4360–4372.

    Article  Google Scholar 

  • Guo, Z., C. Zheng, and B. Shi, 2002, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65, 046308.

    Article  Google Scholar 

  • He, X. and L.S. Luo, 1997, Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys. 88, 927–944.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Ispolatov, I. and M. Grant, 2002, Lattice Boltzmann method for viscoelastic fluids, Phys. Rev. E 65, 056704.

    Article  Google Scholar 

  • James, D.F., 2009, Boger fluids, Annu. Rev. Fluid Mech. 41, 129–142.

    Article  Google Scholar 

  • Kromkamp, J., D. van den Ende, D. Kandhai, R. van der Sman, and R. Boom, 2006, Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow, Chem. Eng. Sci. 61, 858–873.

    Article  Google Scholar 

  • Krüger, T., F. Varnik, and D. Raabe, 2009, Shear stress in lattice Boltzmann simulations, Phys. Rev. E 79, 046704.

    Article  Google Scholar 

  • Kulkarni, P.M. and J.F. Morris, 2008, Suspension properties at finite Reynolds number from simulated shear flow, Phys. Fluids 20, 040602.

    Article  Google Scholar 

  • Ladd, A.J.C., 1994, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I. Theoretical foundation, J. Fluid Mech. 271, 285–309.

    Article  Google Scholar 

  • Lallemand, P., D. d’Humières, L.S. Luo, and R. Rubinstein, 2003, Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids, Phys. Rev. E 67, 021203.

    Article  Google Scholar 

  • Lee, Y.K., J. Nam, K. Hyun, K.H. Ahn, and S.J. Lee, 2015, Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: Strain stiffening in large amplitude oscillatory shear, Soft Matter 11, 4061–4074.

    Article  Google Scholar 

  • Love, P.J., M. Nekovee, P.V. Coveney, J. Chin, N. González-Segredo, and J.M.R. Martin, 2003, Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and lattice-gas methods, Comput. Phys. Commun. 153, 340–358.

    Article  Google Scholar 

  • Malaspinas, O., N. Fiétier, and M. Deville, 2010, Lattice Boltzmann method for the simulation of viscoelastic fluid flows, J. Non-Newton. Fluid Mech. 165, 1637–1653.

    Article  Google Scholar 

  • Marenduzzo, D., E. Orlandini, M.E. Cates, and J.M. Yeomans, 2007, Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations, Phys. Rev. E 76, 031921.

    Article  Google Scholar 

  • Molaeimanesh, G.R. and M.H. Akbari, 2015, A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method, Korean J. Chem. Eng. 32, 397–405.

    Article  Google Scholar 

  • Nam, J.G., K. Hyun, K.H. Ahn, and S.J. Lee, 2008, Prediction of normal stresses under large amplitude oscillatory shear flow, J. Non-Newton. Fluid Mech. 150, 1–10.

    Article  Google Scholar 

  • Nam, J.G., K. Hyun, K.H. Ahn, and S.J. Lee, 2010, Phase angle of the first normal stress difference in oscillatory shear flow, Korea-Aust. Rheol. J. 22, 247–257.

    Google Scholar 

  • Nguyen, N.Q. and A.J.C. Ladd, 2002, Lubrication corrections for lattice-Boltzmann simulations of particle suspensions, Phys. Rev. E 66, 046708.

    Article  Google Scholar 

  • Onishi, J., Y. Chen, and H. Ohashi, 2005, A lattice Boltzmann model for polymeric liquids, Prog. Comput. Fluid Dyn. 5, 75–84.

    Article  Google Scholar 

  • Qian, Y.H., D. D’Humières, and P. Lallemand, 1992, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17, 479–484.

    Article  Google Scholar 

  • Qian, Y.H. and Y.F. Deng, 1997, A lattice BGK Model for viscoelastic media, Phys. Rev. Lett. 79, 2742–2745.

    Article  Google Scholar 

  • Saksena, R.S. and P.V. Coveney, 2009, Shear rheology of amphiphilic cubic liquid crystals from large-scale kinetic lattice-Boltzmann simulations, Soft Matter 5, 4446–4463.

    Article  Google Scholar 

  • Succi, S., 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.K., Ahn, K.H. & Lee, S.J. Time-dependent viscoelastic properties of Oldroyd-B fluid studied by advection-diffusion lattice Boltzmann method. Korea-Aust. Rheol. J. 29, 137–146 (2017). https://doi.org/10.1007/s13367-017-0015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-017-0015-1

Keywords

Navigation