Skip to main content
Log in

Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agirre-Olabide, I., J. Berasategui, M.J. Elejabarrieta, and M.M. Bou-Ali, 2014, Characterization of the linear viscoelastic region of magnetorheological elastomers, J. Intell. Mater. Syst. Struct. 25, 2074–2081.

    Article  Google Scholar 

  • Ahmed, J., H.S. Ramaswamy, and P.K. Pandey, 2006, Dynamic rheological and thermal characteristics of caramels, LWT-Food Sci. Technol. 39, 216–224.

    Article  Google Scholar 

  • Basdogon, I. and E. Dikmen, 2011, Modeling viscoelastic response of vehicle door seal, Exp. Tech. 35, 29–35.

    Article  Google Scholar 

  • Boczkowska, A. and S.F. Awietjan, 2009, Smart composites of urethane elastomers with carbonyl iron, J. Mater. Sci. 44, 4104–4111.

    Article  Google Scholar 

  • Bose, H. and R. Roder, 2009. Magnetorheological elastomers with high variability of their mechanical properties, J. Phys.-Conf. Ser. 149, 012090.

    Article  Google Scholar 

  • Brown, R.P. 1996, Physical Testing of Rubber, 3rd ed., Chapman & Hall, London.

    Book  Google Scholar 

  • Chazeau, L., J.D. Brown, L.C. Yanyo, and S.S. Stenstein, 2000, Modulus recovery kinetics and other insights into the Payne effect for filled elastomer, Polym. Compos. 21, 202–222.

    Article  Google Scholar 

  • Chen, L., X.L. Gong, and W.H. Li., 2008a, Effect of carbon black on the mechanical performances of magnetorheological elastomers, Polym. Test 27, 340–345.

    Article  Google Scholar 

  • Chen, L., X.L. Gong, and W.H. Li., 2008b, Damping of magnetorheological elastomers, Chin. J. Chem. Phys. 15, 271–274.

    Google Scholar 

  • Chen, L., X.L. Gong, W.Q. Jiang, J.J. Yao, H.X. Deng, and W.H. Li, 2007, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci. 42, 5483–5489.

    Article  Google Scholar 

  • Chen, Y. and C. Xu, 2011, Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crosslinking bond interaction by using rubber process analyzer 2000, Polym. Compos. 32, 1593–1600.

    Article  Google Scholar 

  • De La Fuente, J.L., M. Fernández-García, and M.L. Cerrada, 2003, Viscoelastic behavior in a hydroxyl-terminated polybutadiene gum and its highly filled composites: Effect of the type of filler on the relaxation processes, J. Appl. Polym. Sci. 88, 1705–1712.

    Article  Google Scholar 

  • Demchuck, S.A. and V.A. Kuz’min, 2002, Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation, J. Eng. Phy. Thermophys. 75, 396–400.

    Article  Google Scholar 

  • Deshpande, A.P., 2010, Oscillatory shear rheology for probing nonlinear viscoelasticity of complex fluids: Large amplitude oscillatory shear, In: Deshpande, A.P., J.M. Krishnan, and P.B.S. Kumar, eds., Rheology of Complex Fluids, Springer, New York, 87–110.

    Chapter  Google Scholar 

  • Dong, X., N. Ma, M. Qi, J. Li, R. Chen, and J. Ou, 2012, The pressure-dependent MR effect of magnetorheological elastomers, Smart Mater. Struct. 21, 075014.

    Article  Google Scholar 

  • Eem, S.H., H.J. Jung, and J.H. Koo, 2011, Application of MR elastomers for improving seismic protection of base-isolated structure, IEEE Trans. Magn. 47, 2901–2904.

    Article  Google Scholar 

  • Fan, Y.C., X. Gong, S. Xuan, W. Zhang, J. Zheng, and W. Jiang, 2011, Interfacial friction damping properties in magnetorheological elastomers, Smart Mater. Struct. 20, 035007.

    Article  Google Scholar 

  • Fay, J.J., C.J. Murphy, D.A. Thomas, and L.H. Sperling, 1991, Effect of morphology, crosslink density, and miscibility on interpenetrating polymer network damping effectiveness, Polym. Eng. Sci. 31, 1731–1741.

    Article  Google Scholar 

  • Fukushi, T., S.H. Kim, S. Hashi, and K. Ishiyama, 2013, Magnetic silicone rubber: Fabrication and analysis with application, J. Korean Phys. Soc. 63, 686–690.

    Article  Google Scholar 

  • Funt, J.M., 1988, Dynamic testing and reinforcement of rubber, Rubber Chem. Technol. 61, 842–865.

    Article  Google Scholar 

  • Gade, S., K. Zaveri, H. Konstantin-Hansen, and H. Herlufsen, 1994, Complex modulus and damping measurements using resonant and non-resonant methods, In: Zaveri, K., eds., Technical Review: Damping Measurements-From Impulse Response Functions -From Resonance and Non-resonance Excitation Techniques, Brüel & Kjær A/S, Naerum, 28–44.

    Google Scholar 

  • Gauthier, C., E. Reynauda, R. Vassoillea, and L. Ladouce-Stelandreb, 2004, Analysis of the non-linear viscoelastic behavior of silica filled styrene butadiene rubber, Polymer 45, 2761–2771.

    Article  Google Scholar 

  • Ge, L., X. Gong, Y. Fan, and S. Xuan, 2013, Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix, Smart Mater. Struct. 22, 115029.

    Article  Google Scholar 

  • Ginic-Markovic, M, N.K. Dutta, M. Dimopoulos, N. Roy Choudhury, and J.G. Matisons, 2000, Viscoelastic behaviour of filled, and unfilled, EPDM elastomer, Thermochim. Acta 357-358, 211–216.

    Article  Google Scholar 

  • Gong, X., Y. Xu, S. Xuan, C. Guo, L. Zong, and W. Jiang, 2012, The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry, J. Rheol. 56, 1375–1391.

    Article  Google Scholar 

  • Gunasekaran, S. and M.M. Ak, 2000, Dynamic oscillatory shear testing of foods-selected application, Trends Food Sci. Technol. 11, 115–127.

    Article  Google Scholar 

  • Guo, F., C.B. Du, and R.P. Li, 2014, Viscoelastic parameter model of magnetorheological elastomers based on abel dashpot, Adv. Mech. Eng., 629386.

    Google Scholar 

  • Hegde, S., K. Kiran, and K.V. Gangadharan, 2015, A novel approach to investigate effect of magnetic field on dynamic properties of natural rubber based isotropic thick magnetorheological elastomers in shear mode, J. Cent. South Univ. 22, 2612–2619.

    Article  Google Scholar 

  • Hegde, S., U.R. Poojary, and K.V. Gangadharan, 2014, Experimental investigation of effect of ingredient particle size on dynamic damping of RTV silicone base magnetorheological elastomers, International Conference on Advances in Manufacturing and Materials Engineering (ICAMME 2014), Mangalore, India, 2301–2309.

    Google Scholar 

  • Höfer, P. and A. Lion, 2009, Modelling of frequency-and amplitude-dependent material properties of filler-reinforced rubber, J. Mech. Phys. Solids 57, 500–520.

    Article  Google Scholar 

  • ISO 10846-1, 2008, Acoustics and vibration-Laboratory measurement of vibro-acoustic transfer properties of resilient elements-Part 01: Principles and guidelines, International Standard Organization, Geneva.

  • ISO 10846-2, 2008, Acoustics and vibration-Laboratory measurement of vibro-acoustic transfer properties of resilient elements-Part 02: Dynamic stiffness of elastic supports for translator motion-direct method, International Standard Organization, Geneva.

  • ISO 10846-3, 2002, Acoustics and vibration-Laboratory measurement of vibro-acoustic transfer properties of resilient elements-Part 3: Indirect method for determination of the dynamic stiffness of resilient supports for translatory motion, International Standard Organization, Geneva.

  • Jolly, M.R., J.D. Carlson, and B.C. Muñoz, 1996, A model of the behaviour of magnetorheological materials, Smart Mater. Struct. 5, 607–614.

    Article  Google Scholar 

  • Jong, L., 2005, Viscoelastic properties of ionic polymer composites reinforced by soy protein isolate, J. Polym. Sci. Pt. BPolym. Phys. 43, 3503–3518.

    Article  Google Scholar 

  • Ju, B.X., M. Yu, J. Fu, Q. Yang, X.Q. Liu, and X. Zheng, 2012, A novel porous magnetorheological elastomer: Preparation and evaluation, Smart Mater. Struct. 21, 035001.

    Article  Google Scholar 

  • Kim, Y.K., J.H. Koo, K.S. Kim, and S. Kim, 2010, Vibration isolation strategies using magneto-rheological elastomer for a miniature cryogenic cooler in space application, 2010 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, 1203–1206.

    Chapter  Google Scholar 

  • Koblar, D. and M. Boltežar, 2016, Evaluation of the frequencydependent Young’s modulus and damping factor of rubber from experiment and their implementation in a finite-element analysis, Exp. Tech. 40, 235–244.

    Article  Google Scholar 

  • Koo, J.H., A. Dawson, and H.J. Jung, 2012, Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic particles, J. Intell. Mater. Syst. Struct. 23, 1049–1054.

    Article  Google Scholar 

  • Kumar, A., A.D. Stickland, and P.J. Scales, 2012, Viscoelasticity of coagulated alumina suspensions, Korea-Aust. Rheol. J. 24, 105–111.

    Article  Google Scholar 

  • Lakes, R., 2009, Viscoelastic Materials, Cambridge University Press, New York.

    Book  Google Scholar 

  • Leng, D., L. Sun, F. Gordaninejad, A. Bayat, and Y. Lin, 2015, The dynamic performance of magnetic-sensitive elastomers under impact loading, Smart Mater. Struct. 24, 045023.

    Article  Google Scholar 

  • Leopoldes, J., C. Barres, J.L. Leblanc, and P. Georget, 2004, Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds, J. Appl. Polym. Sci. 91, 577–588.

    Article  Google Scholar 

  • Li, J.F. and X.L. Gong, 2008, Dynamic damping property of magnetorheological elastomer, J. Cent. South Univ. 15, 261–265.

    Article  Google Scholar 

  • Li, R. and L.Z. Sun, 2011, Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes, Appl. Phys. Lett. 99, 131912.

    Article  Google Scholar 

  • Li, W., X. Zang, and H. Du, 2012, Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control, J. Intell. Mater. Syst. Struct. 23, 1041–1048.

    Article  Google Scholar 

  • Li, W.H., Y. Zhou, and T.F. Tian, 2010a, Viscoelastic properties of MR elastomers under harmonic loading, Rheol. Acta 49, 733–740.

    Article  Google Scholar 

  • Li, W.H., Y. Zhou, T. Tian, and G. Alici, 2010b, Creep and recovery behaviors of magnetorheological elastomers, Front. Mech. Eng. China 5, 341–346.

    Article  Google Scholar 

  • Li, Y., J. Li, T. Tian, and W. Li, 2013, A highly adjustable magnetorheological elastomer base isolator for applications of realtime adaptive control, Smart Mater. Struct. 22, 095020.

    Article  Google Scholar 

  • Liao, G., X. Gong, S. Xuan, C. Guo, and L. Zong, 2012, Magnetic-field-induced normal force of magnetorheological elastomer under compression status, Ind. Eng. Chem. Res. 51, 3322–3328.

    Article  Google Scholar 

  • Lin, T.R., N.H. Farag, and J. Pan, 2003, Evaluation of frequency dependent rubber mount stiffness and damping by impact test, Appl. Acoust. 66, 829–844.

    Article  Google Scholar 

  • Lion, A. and C. Kardelky, 2004, The Payne effect in finite viscoelasticity: Constitutive modelling based on fractional derivatives and intrinsic time scales, Int. J. Plast. 20, 1313–1345.

    Article  Google Scholar 

  • Lokander, M. and B. Stenberg, 2003, Performance of isotropic magnetorheological rubber materials, Polym. Test 22, 245–251.

    Article  Google Scholar 

  • Lu, X., X. Qiao, H. Watanabe, X. Gong, T. Yang, W. Li, K. Sun, M. Li, K. Yang, H. Xie, Q. Yin, D. Wang, and X. Chen, 2012, Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS), Rheol. Acta 51, 37–50.

    Article  Google Scholar 

  • Luo, W., X. Hu, C. Wang, and Q. Li, 2010, Frequency-and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber, Int. J. Mech. Sci. 52, 168–174.

    Article  Google Scholar 

  • Mallik, A.K., V. Kher, M. Puri, and H. Hatwal, 1999, On the modelling of non-linear elastomeric vibration isolators, J. Sound Vibr. 219, 239–253.

    Article  Google Scholar 

  • Martinelli, A.E.B., 2005, Rubber Bearings for Precision Positioning Systems, M.S. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • McConnel, K.G., 1995, Vibration Testing: Theory and Practice, John Wiley & Sons, New York.

    Google Scholar 

  • Medalia, A.I., 1978, Effect of carbon black on dynamic properties of rubber vulcanizates, Rubber Chem. Technol. 51, 437–523.

    Article  Google Scholar 

  • Nadeau, S. and Y. Champoux, 2000, Application of the direct complex stiffness method to engine mounts, Exp. Tech. 24, 21–23.

    Article  Google Scholar 

  • Ooi, L.E. and Z.M. Ripin, 2011, Dynamic stiffness and loss factor measurement of engine rubber mount by impact test, Mater. Des. 32, 1880–1887.

    Article  Google Scholar 

  • Opie, S. and W. Yim, 2011, Design and control of a real-time variable modulus vibration isolator, J. Intell. Mater. Syst. Struct. 22, 113–125.

    Article  Google Scholar 

  • Osman, M.A. and A. Atallah, 2006, Effect of the particle size on the viscoelastic properties of filled polyethylene, Polymer 47, 2357–2368.

    Article  Google Scholar 

  • Padalka, O., H.J. Song, N.M. Wereley, J.A. Filer II, and R.C. Bell, 2010, Stiffness and damping in Fe, Co, and Ni nanowirebased magnetorheological elastomeric composites, IEEE Trans. Magn. 46, 2275–2277.

    Article  Google Scholar 

  • Payne, A.R., 1966, Physical Properties of Natural Rubber, M.S. Thesis, Durham University.

    Google Scholar 

  • Qiao, X., X. Lu, W. Li, J. Chen, X. Gong, T. Yang, W. Li, K. Sun, and X. Chen, 2012, Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix, Smart Mater. Struct. 21, 115028.

    Article  Google Scholar 

  • Ramier, J., C. Gauthier, L. Chazeau, L. Stelandre, and L. Guy, 2006, Payne effect in silica filled styrene butadiene rubber: Influence of surface treatment, J. Pol. Sci. Part B Pol. Phy. 45, 286–297.

    Article  Google Scholar 

  • Ramorino, G., D. Vetturi, D. Cambiaghi, A. Pegoretti, and T. Ricco, 2003, Developments in dynamic testing of rubber compounds: Assessment of non-linear effects, Polym. Test 22, 681–687.

    Article  Google Scholar 

  • Song, H.J., O. Padalka, M. Werely, and R.C. Bell, 2009, Impact of nanaowire versus spherical microparticles in magnetorheological elastomer composites, 50th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, USA, AIAA 2009-2118.

    Google Scholar 

  • Stacer, R.G., C. Hübner, and D.M. Husband, 1990, Binder/filler interaction and the nonlinear behavior of highly-filled elastomers, Rubber Chem. Technol. 63, 488–502.

    Article  Google Scholar 

  • Stelandre, L.L., Y. Bomal, L. Flandin, and D. Labarre, 2003, Dynamic mechanical properties of precipitated silica filled rubber: Influence of morphology and coupling agent, Rub. Chem. Technol. 76, 145–160.

    Article  Google Scholar 

  • Stelzer, G.J., M.J. Schulz, J. Kim, and R.J. Allemang, 2003, A magnetorheological semi-active isolator to reduce noise and vibration transmissibility in automobiles, J. Intell. Mater. Syst. Struct. 14, 743–765.

    Article  Google Scholar 

  • Stepanov, G.V., A.V. Chertovich, and E.Y. Kramarenko, 2012, Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler, J. Magn. Magn. Mater. 324, 3448–3451.

    Article  Google Scholar 

  • Stepanov, G.V., D.Y. Borin, Y.L. Raikher, P.V. Melenev, and N.S. Perov, 2008, Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers, J. Phys.-Condes. Matter 20, 204121.

    Article  Google Scholar 

  • Sun, T.L., X.L. Gong, W.Q. Jiang, J.F. Li, Z.B. Xu, and W.H. Li, 2008, Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber, Polym. Test 27, 520–526.

    Article  Google Scholar 

  • Thompson, D.J., W.J. van Vliet, and J.W. Verheij, 1998, Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements, J. Sound Vibr. 213, 169–188.

    Article  Google Scholar 

  • Tian, T.F., X.Z. Zhang, W.H. Li, G. Alici, and J. Ding, 2013, Study of PDMS based magnetorheological elastomers, J. Phys.-Conf. Ser. 412, 012038.

    Article  Google Scholar 

  • Tsai, M.H., S.L Huang, P.C. Chiang, and C.J. Chen, 2007, Morphology, dynamic mechanical properties, and gas separation of crosslinking silica-containing polyimide nanocomposite thin film, J. Appl. Polym. Sci. 106, 3185–3192.

    Article  Google Scholar 

  • Tsai, M.H. and W.T. Whang, 2001, Dynamic mechanical properties of polyimide/poly(silsesquioxane)-like hybrid films, J. Appl. Polym. Sci. 81, 2500–2516.

    Article  Google Scholar 

  • Ungar, E.E. and E.M. Kerwin Jr., 1962, Loss factors of viscoelastic systems in terms of energy concepts, J. Acoust. Soc. Am. 34, 954–957.

    Article  Google Scholar 

  • Wang, Y., Y. Hu, L. Chen, X. Gong, W. Jiang, P. Zhang, and Z. Chen, 2006, Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers, Polym. Test 25, 262–267.

    Article  Google Scholar 

  • Yang, J., X. Gong, H. Deng, L. Qin, and S. Xuan, 2012, Investigation on the mechanism of damping behavior of magnetorheological elastomers, Smart Mater. Struct. 21, 125015.

    Article  Google Scholar 

  • Yurkeli, K., R. Krishnamoorti, M.F. Tse, K.O. McElrath, A.H. Tsou, and H.C. Wang, 2001, Structure and dynamics of carbon black-filled elastomers, J. Polym. Sci. Pt. B-Polym. Phys. 39, 256–275.

    Article  Google Scholar 

  • Zhu, J.T., Z.D. Xu, and Y.Q. Guo, 2012, Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device, Smart Mater. Struct. 21, 075034.

    Article  Google Scholar 

  • Zhu, J.T., Z.D. Xu, and Y.Q. Guo, 2013, Experimental and modeling study on magnetorheological elastomers with different matrices, J. Mater. Civ. Eng. 25, 1762–1771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umanath R Poojary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poojary, U.R., Hegde, S. & Gangadharan, K. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE. Korea-Aust. Rheol. J. 28, 301–313 (2016). https://doi.org/10.1007/s13367-016-0031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0031-6

Keywords

Navigation