Skip to main content
Log in

Abstract

Let \({\mathcal {K}}\) denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points ABCDEF on \({\mathcal {K}}\), the three intersection points \(AE \cap BF, AD \cap CF, BD \cap CE\) are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The rationale behind this term is explained in Chipalkatti (2018).

References

  • Baker, H.F.: Principles of Geometry, vol. 2. Cambridge University Press, Cambridge (1923)

    Google Scholar 

  • Baralić, D., Spasojević, I.: Illumination of Pascal’s Hexagrammum and Octagrammum Mysticum. Discrete Comput. Geom. 53(2), 414–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chipalkatti, J.: The conjugacy locus of Cayley-Salmon lines. Adv. Geom. 18(1), 41–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, J., Ryba, A.: The Pascal mysticum demystified. Math. Intell. 34(3), 4–8 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Coxeter, H.S.M.: Projective Geometry. Springer-Verlag, New York (1987)

    MATH  Google Scholar 

  • Eisenbud, D., Harris, J.: The Geometry of Schemes. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  • Evans, L., Rigby, J.: Octagrammum Mysticum and the Golden Cross-Ratio. Math. Gaz. 86(505), 35–43 (2002)

    Article  Google Scholar 

  • Harris, J.: Algebraic Geometry, a First Course. Graduate Texts in Mathematics. Springer, New York (1992)

    Google Scholar 

  • Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1992)

    Google Scholar 

  • Howard, B., Millson, J., Snowden, A., Vakil, R.: A description of the outer automorphism of \(S_6\), and the invariants of six points in projective space. J. Combin. Theory Ser. A 115(7), 1296–1303 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kadison, L., Kromann, M.T.: Projective Geometry and Modern Algebra. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  • Pedoe, D.: How many Pascal lines has a sixpoint? Math. Gaz. 25(264), 110–111 (1941)

    Article  Google Scholar 

  • Salmon, G.: A Treatise on Conic Sections. Reprint of the 6th ed. by Chelsea Publishing Co., New York (2005)

  • Seidenberg, A.: Lectures in Projective Geometry. D. Van Nostrand Company, New York (1962)

    MATH  Google Scholar 

  • Ulyanov, A.: Polydiagonal compactification of configuration spaces. J. Algebraic Geom. 11(1), 129–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported in part by a PIMS postdoctoral fellowship and an NSERC postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipalkatti, J., Da Silva, S. Degenerations of Pascal lines. Beitr Algebra Geom 64, 761–781 (2023). https://doi.org/10.1007/s13366-022-00655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-022-00655-x

Keywords

Mathematics Subject Classification

Navigation