Skip to main content

Advertisement

Log in

Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Feline immunodeficiency virus (FIV) is a lentivirus that causes immunosuppression through virus-mediated CD4+ T cell depletion in feline species. FIV infection is complicated by virus-induced disease in the nervous system. FIV enters the brain soon after primary infection and is detected as FIV-encoded RNA, DNA, and proteins in microglia, macrophages, and astrocytes. FIV infection activates neuroinflammatory pathways including cytokines, chemokines, proteases, and ROS with accompanying neuronal injury and loss. Neurobehavioral deficits during FIV infection are manifested as impaired motor and cognitive functions. Several treatment strategies have emerged from studies of FIV neuropathogenesis including the therapeutic benefits of antiretroviral therapies, other protease inhibitors, anti-inflammatory, and neurotrophic compounds. Recently, insulin’s antiviral, anti-inflammatory, and neuroprotective effects were investigated in models of lentivirus brain infection. Insulin suppressed HIV-1 replication in human microglia as well as FIV replication of lymphocytes. Insulin treatment diminished cytokine and chemokine activation in HIV-infected microglia while also protecting neurons from HIV-1 Vpr protein-mediated neurotoxicity. Intranasal (IN) insulin delivery for 6 weeks suppressed FIV expression in the brains of treated cats. IN insulin also reduced neuroinflammation and protected neurons in the hippocampus, striatum, and neocortex of FIV-infected animals. These morphological and molecular effects of IN insulin were confirmed by neurobehavioral studies that showed IN insulin-treated FIV-infected animals displayed improved motor and cognitive performance compared to sham-treated FIV-infected animals. Thus, FIV infection of the nervous system provides a valuable comparative in vivo model for discovering and evaluating disease mechanisms as well as developing therapeutic strategies for NeuroAIDS in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramo F, Bo S, Canese MG, Poli A (1995) Regional distribution of lesions in the central nervous system of cats infected with feline immunodeficiency virus. AIDS Res Hum Retrovir 11:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Acharjee S, Zhu Y, Maingat F, Pardo C, Ballanyi K, Hollenberg MD, Power C (2011) Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. Brain 134:3209–3221

    Article  PubMed  PubMed Central  Google Scholar 

  • Afkhami-Goli A, Liu SH, Zhu Y, Antony JM, Arab H, Power C (2009) Dual lentivirus infection potentiates neuroinflammation and neurodegeneration: viral copassage enhances neurovirulence. J Neuro-Oncol 15:139–152

    CAS  Google Scholar 

  • Beczkowski PM, Litster A, Lin TL, Mellor DJ, Willett BJ, Hosie MJ (2015) Contrasting clinical outcomes in two cohorts of cats naturally infected with feline immunodeficiency virus (FIV). Vet Microbiol 176:50–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Boche D, Hurtrel M, Gray F, Claessens-Maire MA, Ganiere JP, Montagnier L, Hurtrel B (1996) Virus load and neuropathology in the FIV model. J Neuro-Oncol 2:377–387

    CAS  Google Scholar 

  • Bragg DC, Meeker RB, Duff BA, English RV, Tompkins MB (1999) Neurotoxicity of FIV and FIV envelope protein in feline cortical cultures. Brain Res 816:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bucy DS, Brown MS, Bielefeldt-Ohmann H, Thompson J, Bachand AM, Morges M, Elder JH, Vandewoude S, Kraft SL (2011) Early detection of neuropathophysiology using diffusion-weighted magnetic resonance imaging in asymptomatic cats with feline immunodeficiency viral infection. J Neuro-Oncol 17:341–352

    Google Scholar 

  • Chhetri BK, Berke O, Pearl DL, Bienzle D (2015) Comparison of risk factors for seropositivity to feline immunodeficiency virus and feline leukemia virus among cats: a case-case study. BMC Vet Res 11:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Criago JD, Montelaro RC (2010) In: Desport M (ed) Lentivirus tropism and disease, lentiviruses and macrophages. Caister Academic Press, Norfolk, pp 1–25

    Google Scholar 

  • Dow SW, Poss ML, Hoover EA (1990) Feline immunodeficiency virus: a neurotropic lentivirus. J Acquir Immune Defic Syndr 3:658–668

    CAS  PubMed  Google Scholar 

  • Dow SW, Dreitz MJ, Hoover EA (1992) Feline immunodeficiency virus neurotropism: evidence that astrocytes and microglia are the primary target cells. Vet Immunol Immunopathol 35:23–35

    Article  CAS  PubMed  Google Scholar 

  • Dua N, Reubel G, Moore PF, Higgins J, Pedersen NC (1994) An experimental study of primary feline immunodeficiency virus infection in cats and a historical comparison to acute simian and human immunodeficiency virus diseases. Vet Immunol Immunopathol 43:337–355

    Article  CAS  PubMed  Google Scholar 

  • Eckstrand CD, Sparger EE, Murphy BG (2017) Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 98:1985–1996

    Article  PubMed  Google Scholar 

  • Fletcher NF, Bexiga MG, Brayden DJ, Brankin B, Willett BJ, Hosie MJ, Jacque JM, Callanan JJ (2009) Lymphocyte migration through the blood-brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumour necrosis factor (TNF)-alpha within the central nervous system (CNS): studies using an in vitro feline BBB model. Neuropathol Appl Neurobiol 35:592–602

    Article  CAS  PubMed  Google Scholar 

  • Freiherr J, Hallschmid M, Frey WH II, Brunner YF, Chapman CD, Holscher C, Craft S, De Felice FG, Benedict C (2013) Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates MC, Vigeant S, Dale A (2017) Prevalence and risk factors for cats testing positive for feline immunodeficiency virus and feline leukaemia virus infection in cats entering an animal shelter in New Zealand. N Z Vet 65(6):285–291

  • Germinario RJ, DeSantis T, Wainberg MA (1995) Insulin-like growth factor 1 and insulin inhibit HIV type 1 replication in cultured cells. AIDS Res Hum Retrovir 11:555–561

    Article  CAS  PubMed  Google Scholar 

  • Gomez NV, Fontanals A, Castillo V, Gisbert MA, Suraniti A, Mira G, Pisano PB (2012) Evaluation of different antiretroviral drug protocols on naturally infected feline immunodeficiency virus (FIV) cats in the late phase of the asymptomatic stage of infection. Viruses 4:924–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruol DL, Yu N, Parsons KL, Billaud JN, Elder JH, Phillips TR (1998) Neurotoxic effects of feline immunodeficiency virus, FIV-PPR. J Neuro-Oncol 4:415–425

    CAS  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Charter Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidel JR, Dubey JP, Blythe LL, Walker LL, Duimstra JR, Jordan JS (1990) Myelitis in a cat infected with Toxoplasma gondii and feline immunodeficiency virus. J Am Vet Med Assoc 196:316–318

    CAS  PubMed  Google Scholar 

  • Hein A, Martin JP, Koehren F, Bingen A, Dorries R (2000) In vivo infection of ramified microglia from adult cat central nervous system by feline immunodeficiency virus. Virology 268:420–429

    Article  CAS  PubMed  Google Scholar 

  • Hein A, Martin JP, Dorries R (2005) Early pathological changes in the central nervous system of acutely feline-immunodeficiency-virus-infected cats. Virology 343:162–170

    Article  CAS  PubMed  Google Scholar 

  • Hu QY, Fink E, Elder JH (2012) Mapping of receptor binding interactions with the FIV surface glycoprotein (SU); implications regarding immune surveillance and cellular targets of infection. Retrovirology (Auckl) 2012:1–11

    Google Scholar 

  • Huitron-Resendiz S, De Rozieres S, Sanchez-Alavez M, Buhler B, Lin YC, Lerner DL, Henriksen NW, Burudi M, Fox HS, Torbett BE, Henriksen S, Elder JH (2004) Resolution and prevention of feline immunodeficiency virus-induced neurological deficits by treatment with the protease inhibitor TL-3. J Virol 78:4525–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Okada M, Baba K, Shojima T, Shimojima M, Miura T, Miyazawa T (2008) Establishment of a feline astrocyte-derived cell line (G355-5 cells) expressing feline CD134 and a rapid quantitative assay for T-lymphotropic feline immunodeficiency viruses. J Virol Methods 151:242–248

    Article  CAS  PubMed  Google Scholar 

  • Jacobson S, Henriksen SJ, Prospero-Garcia O, Phillips TR, Elder JH, Young WG, Bloom FE, Fox HS (1997) Cortical neuronal cytoskeletal changes associated with FIV infection. J Neuro-Oncol 3:283–289

    CAS  Google Scholar 

  • Johnston J, Power C (1999) Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development. J Virol 73:2491–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JB, Olson M, Rud E, Power C (2001) Xenoinfection of nonhuman primates by feline immunodeficiency virus. Curr Biol 11:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB, Silva C, Hiebert T, Buist R, Peeling J, Dawood MR, Power C (2002a) Neurovirulence depends on virus input titer in brain in feline immunodeficiency virus infection: evidence for activation of innate immunity and neuronal injury. J Neuro-Oncol 8:420–431

    CAS  Google Scholar 

  • Johnston JB, Silva C, Power C (2002b) Envelope gene-mediated neurovirulence in feline immunodeficiency virus infection: induction of matrix metalloproteinases and neuronal injury. J Virol 76:2622–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy JM, Hoke A, Zhu Y, Johnston JB, van Marle G, Silva C, Zochodne DW, Power C (2004) Peripheral neuropathy in lentivirus infection: evidence of inflammation and axonal injury. AIDS 18:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Koirala TR, Nakagaki K, Ishida T, Nonaka S, Morikawa S, Tabira T (2001) Decreased expression of MAP-2 and GAD in the brain of cats infected with feline immunodeficiency virus. Tohoku J Exp Med 195:141–151

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Hudson LC, Tompkins MB, Vahlenkamp TW, Colby B, Rundle C, Meeker RB (2006) Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery. J Neuro-Oncol 12:294–306

    Google Scholar 

  • Macchi S, Maggi F, Di Iorio C, Poli A, Bendinelli M, Pistello M (1998) Detection of feline immunodeficiency proviral sequences in lymphoid tissues and the central nervous system by in situ gene amplification. J Virol Methods 73:109–119

    Article  CAS  PubMed  Google Scholar 

  • Maingat F, Vivithanaporn P, Zhu Y, Taylor A, Baker G, Pearson K, Power C (2009) Neurobehavioral performance in feline immunodeficiency virus infection: integrated analysis of viral burden, neuroinflammation, and neuronal injury in cortex. J Neurosci 29:8429–8437

    Article  CAS  PubMed  Google Scholar 

  • Maingat F, Viappiani S, Zhu Y, Vivithanaporn P, Ellestad KK, Holden J, Silva C, Power C (2010) Regulation of lentivirus neurovirulence by lipopolysaccharide conditioning: suppression of CXCL10 in the brain by IL-10. J Immunol 184:1566–1574

    Article  CAS  PubMed  Google Scholar 

  • Maingat FG, Polyak MJ, Paul AM, Vivithanaporn P, Noorbakhsh F, Ahboucha S, Baker GB, Pearson K, Power C (2012) Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J 27:725–737

    Article  PubMed  Google Scholar 

  • Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA, Cohen EA, Power C (2016) Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 36:10683–10695

    Article  CAS  PubMed  Google Scholar 

  • van Marle G, Antony JM, Silva C, Sullivan A, Power C (2005) Aberrant cortical neurogenesis in a pediatric neuroAIDS model: neurotrophic effects of growth hormone. AIDS 19:1781–1791

    Article  PubMed  Google Scholar 

  • Medeiros Sde O, Abreu CM, Delvecchio R, Ribeiro AP, Vasconcelos Z, Brindeiro Rde M, Tanuri A (2016) Follow-up on long-term antiretroviral therapy for cats infected with feline immunodeficiency virus. J Feline Med Surg 18:264–272

    Article  PubMed  Google Scholar 

  • Meeker RB, Thiede BA, Hall C, English R, Tompkins M (1997) Cortical cell loss in asymptomatic cats experimentally infected with feline immunodeficiency virus. AIDS Res Hum Retrovir 13:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Meeker RB, Bragg DC, Poulton W, Hudson L (2012) Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 347:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeker RB, Asahchop E, Power C (2014) The brain and HAART: collaborative and combative connections. Curr Opin HIV AIDS 9:579–584

    Article  CAS  PubMed  Google Scholar 

  • van der Meer FJ, Schuurman NM, Balzarini J, Egberink HF (2007) Comparative evaluation of the activity of antivirals towards feline immunodeficiency virus in different cell culture systems. Antivir Res 76:198–201

    Article  PubMed  Google Scholar 

  • Miller C, Bielefeldt-Ohmann H, MacMillan M, Huitron-Resendiz S, Henriksen S, Elder J, VandeWoude S (2011) Strain-specific viral distribution and neuropathology of feline immunodeficiency virus. Vet Immunol Immunopathol 143:282–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MM, Fogle JE, Tompkins MB (2013) Infection with feline immunodeficiency virus directly activates CD4+ CD25+ T regulatory cells. J Virol 87:9373–9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell TW, Buckmaster PS, Hoover EA, Whalen LR, Dudek FE (1999) Neuron loss and axon reorganization in the dentate gyrus of cats infected with the feline immunodeficiency virus. J Comp Neurol 411:563–577

    Article  CAS  PubMed  Google Scholar 

  • Noorbakhsh F, Tang Q, Liu S, Silva C, van Marle G, Power C (2006) Lentivirus envelope protein exerts differential neuropathogenic effects depending on infected cell type and site of expression. Virology 348(2):260–276

  • O'Brien SJ, Troyer JL, Brown MA, Johnson WE, Antunes A, Roelke ME, Pecon-Slattery J (2012) Emerging viruses in the Felidae: shifting paradigms. Viruses 4:236–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen NC, Ho EW, Brown ML, Yamamoto JK (1987) Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793

    Article  CAS  PubMed  Google Scholar 

  • Pettersen JA, Jones G, Worthington C, Krentz HB, Keppler OT, Hoke A, Gill MJ, Power C (2006) Sensory neuropathy in human immunodeficiency virus/acquired immunodeficiency syndrome patients: protease inhibitor-mediated neurotoxicity. Ann Neurol 59:816–824

    Article  CAS  PubMed  Google Scholar 

  • Phillips TR, Prospero-Garcia O, Puaoi DL, Lerner DL, Fox HS, Olmsted RA, Bloom FE, Henriksen SJ, Elder JH (1994) Neurological abnormalities associated with feline immunodeficiency virus infection. J Gen Virol 75(Pt 5):979–987

    Article  CAS  PubMed  Google Scholar 

  • Podell M, Oglesbee M, Mathes L, Krakowka S, Olmstead R, Lafrado L (1993) AIDS-associated encephalopathy with experimental feline immunodeficiency virus infection. J Acquir Immune Defic Syndr 6:758–771

    CAS  PubMed  Google Scholar 

  • Podell M, Maruyama K, Smith M, Hayes KA, Buck WR, Ruehlmann DS, Mathes LE (1999) Frontal lobe neuronal injury correlates to altered function in FIV-infected cats. J Acquir Immune Defic Syndr 22:10–18

    Article  CAS  PubMed  Google Scholar 

  • Podell M, March PA, Buck WR, Mathes LE (2000) The feline model of neuroAIDS: understanding the progression towards AIDS dementia. J Psychopharmacol 14:205–213

    Article  CAS  PubMed  Google Scholar 

  • Poli A, Pistello M, Carli MA, Abramo F, Mancuso G, Nicoletti E, Bendinelli M (1999) Tumor necrosis factor-alpha and virus expression in the central nervous system of cats infected with feline immunodeficiency virus. J Neuro-Oncol 5:465–473

    CAS  Google Scholar 

  • Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C (2013) Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 27:2829–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power C (2001) Retroviral diseases of the nervous system: pathogenic host response or viral gene-mediated neurovirulence? Trends Neurosci 24:162–169

    Article  CAS  PubMed  Google Scholar 

  • Power C, Buist R, Johnston JB, Del Bigio MR, Ni W, Dawood MR, Peeling J (1998) Neurovirulence in feline immunodeficiency virus-infected neonatal cats is viral strain specific and dependent on systemic immune suppression. J Virol 72:9109–9115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prospero-Garcia O, Herold N, Waters AK, Phillips TR, Elder JH, Henriksen SJ (1994) Intraventricular administration of a FIV-envelope protein induces sleep architecture changes in rats. Brain Res 659:254–258

    Article  CAS  PubMed  Google Scholar 

  • Ryan G, Klein D, Knapp E, Hosie MJ, Grimes T, Mabruk MJ, Jarrett O, Callanan JJ (2003) Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. J Virol 77:7477–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenz DT, Barraza R, Loewen N, Teo W, Poeschla EM (2012) Feline immunodeficiency virus-based lentiviral vectors. Cold Spring Harb Protoc 2012:71–76

    PubMed  Google Scholar 

  • Savarino A, Pistello M, D'Ostilio D, Zabogli E, Taglia F, Mancini F, Ferro S, Matteucci D, De Luca L, Barreca ML, Ciervo A, Chimirri A, Ciccozzi M, Bendinelli M (2007) Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz AM, McCrackin MA, Schinazi RF, Hill PB, Vahlenkamp TW, Tompkins MB, Hartmann K (2014) Antiviral efficacy of nine nucleoside reverse transcriptase inhibitors against feline immunodeficiency virus in feline peripheral blood mononuclear cells. Am J Vet Res 75:273–281

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Zhang K, Tsutsui S, Holden JK, Gill MJ, Power C (2003) Growth hormone prevents human immunodeficiency virus-induced neuronal p53 expression. Ann Neurol 54:605–614

    Article  CAS  PubMed  Google Scholar 

  • Steffan AM, Lafon ME, Gendrault JL, Koehren F, De Monte M, Royer C, Kirn A, Gut JP (1994) Feline immunodeficiency virus can productively infect cultured endothelial cells from cat brain microvessels. J Gen Virol 75(Pt 12):3647–3653

    Article  CAS  PubMed  Google Scholar 

  • VandeWoude S, Apetrei C (2006) Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 19:728–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VandeWoude S, Troyer J, Poss M (2010) Restrictions to cross-species transmission of lentiviral infection gleaned from studies of FIV. Vet Immunol Immunopathol 134:25–32

    Article  CAS  PubMed  Google Scholar 

  • Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ, Power C (2010) Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology 75:1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JG, Reinke SN, Mamik MK, McKenzie BA, Maingat F, Branton WG, Broadhurst DI, Power C (2014) Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Willett BJ, Hosie MJ (2013) The virus-receptor interaction in the replication of feline immunodeficiency virus (FIV). Curr Opin Virol 3:670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Jones G, Tsutsui S, Opii W, Liu S, Silva C, Butterfield DA, Power C (2005) Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase. J Immunol 175:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Antony JM, Martinez JA, Glerum DM, Brussee V, Hoke A, Zochodne D, Power C (2007) Didanosine causes sensory neuropathy in an HIV/AIDS animal model: impaired mitochondrial and neurotrophic factor gene expression. Brain 130:2011–2023

    Article  PubMed  Google Scholar 

  • Zhu Y, Vergote D, Pardo C, Noorbakhsh F, McArthur JC, Hollenberg MD, Overall CM, Power C (2009) CXCR3 activation by lentivirus infection suppresses neuronal autophagy: neuroprotective effects of antiretroviral therapy. FASEB J 23:2928–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielonka J, Munk C (2011) Cellular restriction factors of feline immunodeficiency virus. Viruses 3:1986–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author holds a Canada Research Chair in Neurological Infection and Immunity and thanks past and current members of the BrainPowerLab for their imagination and industry directed toward understanding the mechanisms by which viruses cause neurological disease and developing new therapeutic approaches for viral infections of the nervous system. The studies cited herein from my group were supported by the Hospital for Sick Children (Toronto, Canada), the Canadian Institutes from Health Research, and the National Institute of Mental Health-NIH. I am also grateful to Drs. Tom Moench, Richard Johnson, and Bruce Chesebro for many helpful discussions about lentivirus neuropathogenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Power.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, C. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. J. Neurovirol. 24, 220–228 (2018). https://doi.org/10.1007/s13365-017-0593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-017-0593-1

Keywords

Navigation