Journal of NeuroVirology

, Volume 23, Issue 4, pp 587–592 | Cite as

The EGF epidermal growth factor counteracts Tat modulation of human endogenous retroviruses of the W family in astrocytes

  • Elena Uleri
  • Claudia Piu
  • Maurizio Caocci
  • Gabriele Ibba
  • Caterina Serra
  • Antonina DoleiEmail author
Short Communication


Human astrocyte cells were exposed to HIV-Tat and/or epidermal growth factor (EGF), to monitor the expression of the neuropathogenic MSRV and Syncytin-1 elements of the HERV-W family of endogenous retroviruses and of TNFα. The results indicate that EGF counteracts Tat regulation of HERV-W/MSRVenv/Syncytin-1, throughout EGFR activation; this effect occurs by interfering with the induction of TNFα production by Tat. The novel effect of EGF counteraction of Tat-mediated regulation of the neuropathogenic HERV-Ws could be neuro-protective, but its actual role in the brain remains to be elucidated.


Epidermal growth factor (EGF) HERV-W/MSRV/Syncytin-1 human endogenous retroviruses Tat NeuroAIDS/neuropathogenicity Tumor necrosis factor-α (TNFα) Epidermal growth factor receptor (EGFR) 



The study was supported in part by grants from CARITRO, grant 2013.0248 and RAS LR-2012, grant CRP-59781. EU was supported by a research fellowship of CARITRO 2013.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. Bagashev A, Sawaya BE (2013) Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 10:358CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, Schneider S, Hölscher AH, Yin J, Meltzer SJ, Danenberg KD, Danenberg PV, Lord RV (2004) A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene 23:4780–4788CrossRefPubMedGoogle Scholar
  3. Chattopadhyay S, Veleeparambil M, Poddar D, Abdulkhalek S, Bandyopadhyay SK, Fensterl V, Sen GC (2015) EGFR kinase activity is required for TLR4 signaling and the septic shock response. EMBO Rep 16:1535–1547CrossRefPubMedPubMedCentralGoogle Scholar
  4. Christensen T (2016) Human endogenous retroviruses in neurologic disease. APMIS 124:116–126CrossRefPubMedGoogle Scholar
  5. Crews L, Patrick C, Achim CL, Everall IP, Masliah E (2009) Molecular pathology of neuro AIDS (CNS-HIV). Int J Mol Sci 10:1045–1063CrossRefPubMedPubMedCentralGoogle Scholar
  6. De S, Zhou H, DeSantis D, Croniger CM, Li X, Stark GR (2015) Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci U S A 112:9680–9685CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dolei A (2006) Endogenous retroviruses and human disease. Exp Rev Clin Immunol 2:149–167CrossRefGoogle Scholar
  8. Dolei A, Perron H (2009) The multiple sclerosis-associated retrovirus and its HERV-W endogenous family: a biological interface between virology, genetics, and immunology in human physiology and disease. J Neuro-Oncol 1:4–13Google Scholar
  9. Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29:569–574CrossRefPubMedGoogle Scholar
  10. Faber DR, Kalkhoven E, Westerink J, Bouwman JJ, Monajemi HM, Visseren FL (2012) Conditioned media from (pre)adipocytes stimulate fibrinogen and PAI-1 production by HepG2 hepatoma cells. Nutr Diabetes 2:e52CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E (2014) Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J NeuroImmune Pharmacol 9:102–116CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet N, Lovell-Badge R (2012) Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. PNAS 109:1317–1322CrossRefPubMedPubMedCentralGoogle Scholar
  13. Good M, Siggers RH, Sodhi CP, Afrazi A, Alkhudari F, Egan CE, Neal MD, Yazji I, Jia H, Lin J, Branca MF, Ma C, Prindle T, Grant Z, Shah S, Slagle D 2nd, Paredes J, Ozolek J, Gittes GK, Hackam DJ (2012) Amniotic fluid inhibits toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proc Natl Acad Sci U S A 109:11330–11335CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hakkers CS, Arends JE, Barth RE, Du Plessis S, Hoepelman AI, Vink M (2017) Review of functional MRI in HIV: effects of aging and medication. J Neurovirol 2017(23):20–32CrossRefGoogle Scholar
  15. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, SL MTD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, JC MA, Morgello S, Simpson DM, JA MC, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kannangai R, Sachithanandham J, Mahadevan A, Abraham AM, Sridharan G, Desai A, Ravi V, Shankar SK (2013) Association of neurotropic viruses in HIV-infected individuals who died of secondary complications of tuberculosis, cryptococcosis, or toxoplasmosis in South India. J Clin Microbiol 51:1022–1025CrossRefPubMedPubMedCentralGoogle Scholar
  17. Küry P, Nath A, Créange A, Dolei A, Marche PN, Perron A. (2017) Human endogenous retroviruses and neurological diseases: pathogenes within human genome interplay with environmental factors. Lancet Neurology solicited review, under revision.Google Scholar
  18. Langford D, Masliah E (2001) Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol 11:306–312CrossRefPubMedGoogle Scholar
  19. Le LT, Spudich SS (2016) HIV-associated neurologic disorders and central nervous system opportunistic infections in HIV. Semin Neurol 36:373–381CrossRefPubMedGoogle Scholar
  20. Li L, Deng X, Linsuwanon P, Bangsberg D, Bwana MB, Hunt P, Martin JN, Deeks SG, Delwart E (2013) AIDS alters the commensal plasma virome. J Virol 87:10912–10915CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu B, Neufeld AH (2007) Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res 85:3523–3529CrossRefPubMedGoogle Scholar
  22. Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A (2007) Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virol 362:120–130CrossRefGoogle Scholar
  23. Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, Serra C, Dolei A (2009) Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 161:98–106CrossRefPubMedGoogle Scholar
  24. Mameli G, Madeddu G, Mei A, Uleri E, Poddighe L, Delogu LG, Maida I, Babudieri S, Serra C, Manetti R, Mura MS, Dolei A (2013) Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-Barr virus latency: the missing link with multiple sclerosis? PLoS One 8:e78474CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, Valente ST (2015) Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res 13:64–79CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789CrossRefPubMedGoogle Scholar
  27. Pulliam L, Herndier B, Tang N, McGrath M (1991) Human immunodeficiency virus-infected macrophages produce soluble factor that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87:503–512CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugnière M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B (2010) Phosphatidylinositol-(4, 5)- bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29:1348–1362CrossRefPubMedPubMedCentralGoogle Scholar
  29. Redelsperger F, Raddi N, Bacquin A, Vernochet C, Mariot V, Gache V, Blanchard-Gutton N, Charrin S, Tiret L, Dumonceaux J, Dupressoir A, Heidmann T (2016) Genetic evidence that captured retroviral envelope syncytins contribute to myoblast fusion and muscle sexual dimorphism in mice. PLoS Genet 12:e1006289CrossRefPubMedPubMedCentralGoogle Scholar
  30. Scott JC, Woods SP, Carey CL, Weber E, Bondi MW, Grant I (2011) Neurocognitive consequences of HIV infection in older adults: an evaluation of the “cortical” hypothesis. AIDS Behav 15:1187–1196CrossRefPubMedGoogle Scholar
  31. Serra C, Mameli G, Arru G, Sotgiu S, Rosati G, Dolei A (2003) In vitro modulation of the multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS pathogenesis. J Neuro-Oncol 9:637–643Google Scholar
  32. Shah A, Gangwani MR, Chaudhari NS, Glazyrin A, Bhat HK, Kumar A (2016) Neurotoxicity in the post-HAART era: caution for the antiretroviral therapeutics. Neurotox Res 30:677–697CrossRefPubMedGoogle Scholar
  33. Shoham N, Cohen L, Yaniv A, Gazit A (2003) The Tat protein of the human immunodeficiency virus type 1 (HIV-1) interacts with the EGF-like repeats of the notch proteins and the EGF precursor. Virus Res 98:57–61CrossRefPubMedGoogle Scholar
  34. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24:1243–1250PubMedGoogle Scholar
  35. Torroglosa A, Murillo-Carretero M, Romero-Grimaldi C, Matarredona ER, Campos-Caro A, Estrada C (2007) Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway. Stem Cells 25:88–97CrossRefPubMedGoogle Scholar
  36. Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, Sadiq S, Morgello S, Sharer L, Volsky DJ (2003) Detection of HIV-1 DNA in microglial/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13:144–154CrossRefPubMedGoogle Scholar
  37. Uleri E, Beltrami S, Gordon J, Dolei A, Sariyer IK (2011) Extinction of tumor antigen expression by SF2/ASF in JCV-transformed cells. Genes Cancer 2:728–736CrossRefPubMedPubMedCentralGoogle Scholar
  38. Uleri E, Mei A, Mameli G, Poddighe L, Serra C, Dolei A (2014) HIV Tat acts on endogenous retroviruses of the W family and this occurs via toll-like receptor 4: inference for neuroAIDS. AIDS 28:2659–2670CrossRefPubMedGoogle Scholar
  39. Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117:2051–2058CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of SassariSassariItaly

Personalised recommendations