Control of HSV-1 latency in human trigeminal ganglia—current overview

Abstract

Although recurrent Herpes simplex virus type 1 (HSV-1) infections are quite common in humans, little is known about the exact molecular mechanisms involved in latency and reactivation of the virus from its stronghold, the trigeminal ganglion. After primary infection, HSV-1 establishes latency in sensory neurons, a state that lasts for the life of the host. Reactivation of the virus leads to recurrent disease, ranging from relatively harmless cold sores to ocular herpes. If herpes encephalitis—often a devastating disease—is also caused by reactivation or a new infection, is still a matter of debate. It is widely accepted that CD8+ T cells as well as host cellular factors play a crucial role in maintaining latency. At least in the animal model, IFNγ and Granzyme B secretion of T cells were shown to be important for control of viral latency. Furthermore, the virus itself expresses factors that regulate its own latency–reactivation cycle. In this regard, the latency associated transcript, immediate–early proteins, and viral miRNAs seem to be the key players that control latency and reactivation on the viral side. This review focuses on HSV-1 latency in humans in the light of mechanisms learned from animal models.

This is a preview of subscription content, access via your institution.

References

  1. Adcock IM (2000) Molecular mechanisms of glucocorticosteroid actions. Pulm Pharmacol Ther 13:115–126

    PubMed  CAS  Article  Google Scholar 

  2. Allen SJ, Hamrah P, Gate D, Mott KR, Mantopoulos D, Zheng L, Town T, Jones C, von Andrian UH, Freeman GJ, Sharpe AH, Benmohamed L, Ahmed R, Wechsler SL, Ghiasi H (2011) The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J Virol 85:4184–4197

    PubMed  CAS  Article  Google Scholar 

  3. Antinone SE, Zaichick SV, Smith GA (2010) Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J Virol 84:13019–13030

    PubMed  CAS  Article  Google Scholar 

  4. Arbusow V, Derfuss T, Held K, Himmelein S, Strupp M, Gurkov R, Brandt T, Theil D (2010) Latency of herpes simplex virus type-1 in human geniculate and vestibular ganglia is associated with infiltration of CD8+ T cells. J Med Virol 82:1917–1920

    PubMed  Article  Google Scholar 

  5. Baringer JR, Swoveland P (1973) Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med 288:648–650

    PubMed  CAS  Article  Google Scholar 

  6. Bertke AS, Swanson SM, Chen J, Imai Y, Kinchington PR, Margolis TP (2011). A5-positive primary sensory neurons are non-permissive for productive infection with herpes simplex virus 1 in vitro. J. Virol 85:6669-77

    Google Scholar 

  7. Bonneau RH (1996) Stress-induced effects on integral immune components involved in herpes simplex virus (HSV)-specific memory cytotoxic T lymphocyte activation. Brain Behav Immun 10:139–163

    PubMed  CAS  Article  Google Scholar 

  8. Cai GY, Pizer LI, Levin MJ (2002) Fractionation of neurons and satellite cells from human sensory ganglia in order to study herpesvirus latency. J Virol Methods 104:21–32

    PubMed  CAS  Article  Google Scholar 

  9. Cantin EM, Hinton DR, Chen J, Openshaw H (1995) Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol 69:4898–4905

    PubMed  CAS  Google Scholar 

  10. Cantin E, Tanamachi B, Openshaw H (1999) Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol 73:3418–3423

    PubMed  CAS  Google Scholar 

  11. Carr DJ, Halford WP, Veress LA, Noisakran S, Perng GC, Wechsler SL (1998) The persistent elevated cytokine mRNA levels in trigeminal ganglia of mice latently infected with HSV-1 are not due to the presence of latency associated transcript (LAT) RNAs. Virus Res 54:1–8

    PubMed  CAS  Article  Google Scholar 

  12. Chen SH, Kramer MF, Schaffer PA, Coen DM (1997) A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71:5878–5884

    PubMed  CAS  Google Scholar 

  13. Chen SH, Garber DA, Schaffer PA, Knipe DM, Coen DM (2000) Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation. Virology 278:207–216

    PubMed  CAS  Article  Google Scholar 

  14. Chen SH, Lee LY, Garber DA, Schaffer PA, Knipe DM, Coen DM (2002a) Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 76:4764–4772

    PubMed  CAS  Article  Google Scholar 

  15. Chen XP, Mata M, Kelley M, Glorioso JC, Fink DJ (2002b) The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8:204–210

    PubMed  CAS  Article  Google Scholar 

  16. Cook ML, Bastone VB, Stevens JG (1974) Evidence that neurons harbor latent herpes simplex virus. Infect Immun 9:946–951

    PubMed  CAS  Google Scholar 

  17. Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE (1987) Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 317:1427–1432

    PubMed  CAS  Article  Google Scholar 

  18. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508

    PubMed  CAS  Article  Google Scholar 

  19. Decman V, Kinchington PR, Harvey SA, Hendricks RL (2005) Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 79:10339–10347

    PubMed  CAS  Article  Google Scholar 

  20. Derfuss T, Segerer S, Herberger S, Sinicina I, Hufner K, Ebelt K, Knaus HG, Steiner I, Meinl E, Dornmair K, Arbusow V, Strupp M, Brandt T, Theil D (2007) Presence of HSV-1 immediate early genes and clonally expanded T-cells with a memory effector phenotype in human trigeminal ganglia. Brain Pathol 17:389–398

    PubMed  CAS  Article  Google Scholar 

  21. Devi-Rao GB, Bloom DC, Stevens JG, Wagner EK (1994) Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol 68:1271–1282

    PubMed  CAS  Google Scholar 

  22. Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL (2008) Transport and egress of herpes simplex virus in neurons. Rev Med Virol 18:35–51

    PubMed  Article  Google Scholar 

  23. Ellison AR, Yang L, Voytek C, Margolis TP (2000) Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains. Virology 268:17–28

    PubMed  CAS  Article  Google Scholar 

  24. Esaki S, Goshima F, Katsumi S, Watanabe D, Ozaki N, Murakami S, Nishiyama Y (2010). Apoptosis induction after herpes simplex virus infection differs according to cell type in vivo. Arch Virol 155:1235-45

    Google Scholar 

  25. Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP (2002) Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci USA 99:978–983

    PubMed  CAS  Article  Google Scholar 

  26. Freeman ML, Sheridan BS, Bonneau RH, Hendricks RL (2007) Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol 179:322–328

    PubMed  CAS  Google Scholar 

  27. Furuta Y, Takasu T, Sato KC, Fukuda S, Inuyama Y, Nagashima K (1992) Latent herpes simplex virus type 1 in human geniculate ganglia. Acta Neuropathol 84:39–44

    PubMed  CAS  Article  Google Scholar 

  28. Furuta Y, Takasu T, Fukuda S, Inuyama Y, Sato KC, Nagashima K (1993) Latent herpes simplex virus type 1 in human vestibular ganglia. Acta Otolaryngol Suppl 503:85–89

    PubMed  CAS  Article  Google Scholar 

  29. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10:524–530

    PubMed  CAS  Article  Google Scholar 

  30. Halford WP, Schaffer PA (2001) ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75:3240–3249

    PubMed  CAS  Article  Google Scholar 

  31. Halford WP, Gebhardt BM, Carr DJ (1996) Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J Immunol 157:3542–3549

    PubMed  CAS  Google Scholar 

  32. Halford WP, Weisend C, Grace J, Soboleski M, Carr DJ, Balliet JW, Imai Y, Margolis TP, Gebhardt BM (2006) ICP0 antagonizes Stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency. Virol J 3:44

    PubMed  Article  CAS  Google Scholar 

  33. Hamza MA, Higgins DM, Feldman LT, Ruyechan WT (2007) The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons

    Google Scholar 

  34. Held K, Junker A, Dornmair K, Meinl E, Sinicina I, Brandt T, Theil D, Derfuss T (2011). Expression of HSV-1 encoded miRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J. Virol 85:9680-5

    Google Scholar 

  35. Henderson G, Peng W, Jin L, Perng GC, Nesburn AB, Wechsler SL, Jones C (2002) Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol 8(Suppl 2):103–111

    PubMed  CAS  Article  Google Scholar 

  36. Henderson G, Jaber T, Carpenter D, Wechsler SL, Jones C (2009) Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. J Neurovirol 15:439–448

    PubMed  CAS  Article  Google Scholar 

  37. Hill JM, Sedarati F, Javier RT, Wagner EK, Stevens JG (1990) Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125

    PubMed  CAS  Article  Google Scholar 

  38. Himmelein S, St Leger AJ, Knickelbein JE, Rowe A, Freeman ML, Hendricks RL (2011) Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae 2:5

    PubMed  CAS  Article  Google Scholar 

  39. Hoftberger R, boul-Enein F, Brueck W, Lucchinetti C, Rodriguez M, Schmidbauer M, Jellinger K, Lassmann H (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14:43–50

    PubMed  CAS  Article  Google Scholar 

  40. Huang J, Lazear HM, Friedman HM (2010). Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology 409:12-16

    Google Scholar 

  41. Hüfner K, Derfuss T, Herberger S, Sunami K, Russell S, Sinicina I, Arbusow V, Strupp M, Brandt T, Theil D (2006) Latency of alpha-herpes viruses is accompanied by a chronic inflammation in human trigeminal ganglia but not in dorsal root ganglia. J Neuropathol Exp Neurol 65:1022–1030

    PubMed  Article  Google Scholar 

  42. Hüfner K, Arbusow V, Himmelein S, Derfuss T, Sinicina I, Strupp M, Brandt T, Theil D (2007) The prevalence of human herpesvirus 6 in human sensory ganglia and its co-occurrence with alpha-herpesviruses. J Neurovirol 13:462–467

    PubMed  Article  CAS  Google Scholar 

  43. Hüfner K, Horn A, Derfuss T, Glon C, Sinicina I, Arbusow V, Strupp M, Brandt T, Theil D (2009) Fewer latent HSV-1 and cytotoxic T-cells occur in the ophthalmic division than in the maxillary and mandibular divisions of the human trigeminal ganglion and nerve. J Virol 83:3696–3703

    PubMed  Article  CAS  Google Scholar 

  44. Imai Y, Apakupakul K, Krause PR, Halford WP, Margolis TP (2009). Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal ganglia. J Virol 83:7873-82

    Google Scholar 

  45. Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, Benmohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from Granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332

    PubMed  CAS  Article  Google Scholar 

  46. Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, Coen DM (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659–4672

    PubMed  CAS  Article  Google Scholar 

  47. Kang W, Mukerjee R, Fraser NW (2003) Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312:233–244

    PubMed  CAS  Article  Google Scholar 

  48. Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603

    PubMed  CAS  Article  Google Scholar 

  49. Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL (2008) Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322:268–271

    PubMed  CAS  Article  Google Scholar 

  50. Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221

    PubMed  CAS  Article  Google Scholar 

  51. Kramer MF, Coen DM (1995) Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389–1399

    PubMed  CAS  Google Scholar 

  52. Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM, Coen DM (2011). Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417: 239-47

    Google Scholar 

  53. Liedtke W, Opalka B, Zimmermann CW, Lignitz E (1993) Age distribution of latent herpes simplex virus 1 and varicella-zoster virus genome in human nervous tissue. J Neurol Sci 116:6–11

    PubMed  CAS  Article  Google Scholar 

  54. Liu T, Tang Q, Hendricks RL (1996) Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J Virol 70:264–271

    PubMed  CAS  Google Scholar 

  55. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466

    PubMed  CAS  Article  Google Scholar 

  56. Liu T, Khanna KM, Carriere BN, Hendricks RL (2001) Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol 75:11178–11184

    PubMed  CAS  Article  Google Scholar 

  57. Maillet S, Naas T, Crepin S, Roque-Afonso AM, Lafay F, Efstathiou S, Labetoulle M (2006) Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts. J Virol 80:9310–9321

    PubMed  CAS  Article  Google Scholar 

  58. Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, Voytek C (2007a) Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol 81:11069–11074

    PubMed  CAS  Article  Google Scholar 

  59. Margolis TP, Imai Y, Yang L, Vallas V, Krause PR (2007b) Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 81:1872–1878

    PubMed  CAS  Article  Google Scholar 

  60. Mark KE, Wald A, Magaret AS, Selke S, Olin L, Huang ML, Corey L (2008) Rapidly cleared episodes of herpes simplex virus reactivation in immunocompetent adults. J Infect Dis 198:1141–1149

    PubMed  Article  Google Scholar 

  61. Mehta A, Maggioncalda J, Bagasra O, Thikkavarapu S, Saikumari P, Valyi-Nagy T, Fraser NW, Block TM (1995) In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206:633–640

    PubMed  CAS  Article  Google Scholar 

  62. Mikloska Z, Cunningham AL (1998) Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 79(Pt 2):353–361

    PubMed  CAS  Google Scholar 

  63. Montgomerie JZ, Becroft DM, Croxson MC, Doak PB, North JD (1969) Herpes-simplex-virus infection after renal transplantation. Lancet 2:867–871

    PubMed  CAS  Article  Google Scholar 

  64. Naraqi S, Jackson GG, Jonasson O, Yamashiroya HM (1977) Prospective study of prevalence, incidence, and source of herpesvirus infections in patients with renal allografts. J Infect Dis 136:531–540

    PubMed  CAS  Article  Google Scholar 

  65. Neumann H, Cavalie A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    PubMed  CAS  Article  Google Scholar 

  66. Orr MT, Mathis MA, Lagunoff M, Sacks JA, Wilson CB (2007) CD8 T cell control of HSV reactivation from latency is abrogated by viral inhibition of MHC class I. Cell Host Microbe 2:172–180

    PubMed  CAS  Article  Google Scholar 

  67. Padgett DA, Sheridan JF, Dorne J, Berntson GG, Candelora J, Glaser R (1998) Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci USA 95:7231–7235

    PubMed  CAS  Article  Google Scholar 

  68. Pebody RG, Andrews N, Brown D, Gopal R, De MH, Francois G, Gatcheva N, Hellenbrand W, Jokinen S, Klavs I, Kojouharova M, Kortbeek T, Kriz B, Prosenc K, Roubalova K, Teocharov P, Thierfelder W, Valle M, van Damme P, Vranckx R (2004) The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect 80:185–191

    PubMed  CAS  Article  Google Scholar 

  69. Pereira RA, Tscharke DC, Simmons A (1994) Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J Exp Med 180:841–850

    PubMed  CAS  Article  Google Scholar 

  70. Pereira DB, Antoni MH, Danielson A, Simon T, Efantis-Potter J, Carver CS, Duran RE, Ironson G, Klimas N, Fletcher MA, O’Sullivan MJ (2003) Stress as a predictor of symptomatic genital herpes virus recurrence in women with human immunodeficiency virus. J Psychosom Res 54:237–244

    PubMed  Article  Google Scholar 

  71. Perng GC, Jones C (2010) Towards an understanding of the herpes simplex virus type 1 latency–reactivation cycle. Interdiscip Perspect Infect Dis 2010:262415

    PubMed  Google Scholar 

  72. Perng GC, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994) The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68:8045–8055

    PubMed  CAS  Google Scholar 

  73. Perng GC, Ghiasi H, Slanina SM, Nesburn AB, Wechsler SL (1996) The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 70:976–984

    PubMed  CAS  Google Scholar 

  74. Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503

    PubMed  CAS  Article  Google Scholar 

  75. Pevenstein SR, Williams RK, McChesney D, Mont EK, Smialek JE, Straus SE (1999) Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 73:10514–10518

    PubMed  CAS  Google Scholar 

  76. Roizman B (2011) The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 85:7474–7482

    PubMed  CAS  Article  Google Scholar 

  77. Sainz B, Loutsch JM, Marquart ME, Hill JM (2001) Stress-associated immunomodulation and herpes simplex virus infections. Med Hypotheses 56:348–356

    PubMed  CAS  Article  Google Scholar 

  78. Sanders VJ, Felisan S, Waddell A, Tourtellotte WW (1996) Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J Neurovirol 2:249–258

    PubMed  CAS  Article  Google Scholar 

  79. Sawtell NM (1998) The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72:6888–6892

    PubMed  CAS  Google Scholar 

  80. Sawtell NM (2003) Quantitative analysis of herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol 77:4127–4138

    PubMed  CAS  Article  Google Scholar 

  81. Sawtell NM, Poon DK, Tansky CS, Thompson RL (1998) The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72:5343–5350

    PubMed  CAS  Google Scholar 

  82. Sheridan BS, Cherpes TL, Urban J, Kalinski P, Hendricks RL (2009) Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol 83:2237–2245

    PubMed  CAS  Article  Google Scholar 

  83. Shimeld C, Whiteland JL, Nicholls SM, Grinfeld E, Easty DL, Gao H, Hill TJ (1995) Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J Neuroimmunol 61:7–16

    PubMed  CAS  Article  Google Scholar 

  84. Simmons A, Tscharke DC (1992) Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175:1337–1344

    PubMed  CAS  Article  Google Scholar 

  85. St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011) Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 186:3927–3933

    PubMed  CAS  Article  Google Scholar 

  86. Stevens JG, Cook ML (1971) Latent herpes simplex virus in spinal ganglia of mice. Science 173:843–845

    PubMed  CAS  Article  Google Scholar 

  87. Stevens JG, Wagner EK, vi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059

    PubMed  CAS  Article  Google Scholar 

  88. Suvas S, Azkur AK, Rouse BT (2006) Qa-1b and CD94-NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8+ T cells in the latently infected trigeminal ganglia. J Immunol 176:1703–1711

    PubMed  CAS  Google Scholar 

  89. Theil D, Arbusow V, Derfuss T, Strupp M, Pfeiffer M, Mascolo A, Brandt T (2001) Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol 11:408–413

    PubMed  CAS  Article  Google Scholar 

  90. Theil D, Derfuss T, Strupp M, Gilden DH, Arbusow V, Brandt T (2002) Cranial nerve palsies: herpes simplex virus type 1 and varicella-zoster virus latency. Ann Neurol 51:273–274

    PubMed  Article  Google Scholar 

  91. Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, Strupp M, Arbusow V, Brandt T (2003a) Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163:2179–2184

    PubMed  CAS  Article  Google Scholar 

  92. Theil D, Paripovic I, Derfuss T, Herberger S, Strupp M, Arbusow V, Brandt T (2003b) Dually infected (HSV-1/VZV) single neurons in human trigeminal ganglia. Ann Neurol 54:678–682

    PubMed  Article  Google Scholar 

  93. Theil D, Horn AK, Derfuss T, Strupp M, Arbusow V, Brandt T (2004) Prevalence and distribution of HSV-1, VZV, and HHV-6 in human cranial nerve nuclei III, IV, VI, VII, and XII. J Med Virol 74:102–106

    PubMed  Article  Google Scholar 

  94. Thompson RL, Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71:5432–5440

    PubMed  CAS  Google Scholar 

  95. Thompson RL, Sawtell NM (2000) Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74:965–974

    PubMed  CAS  Article  Google Scholar 

  96. Thompson RL, Sawtell NM (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80:10919–10930

    PubMed  CAS  Article  Google Scholar 

  97. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    PubMed  CAS  Google Scholar 

  98. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human {alpha}-herpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683

    PubMed  CAS  Article  Google Scholar 

  99. van Lint AL, Kleinert L, Clarke SR, Stock A, Heath WR, Carbone FR (2005) Latent infection with herpes simplex virus is associated with ongoing CD8+ T-cell stimulation by parenchymal cells within sensory ganglia. J Virol 79:14843–14851

    PubMed  Article  CAS  Google Scholar 

  100. van Velzen M, Laman JD, Kleinjan A, Poot A, Osterhaus AD, Verjans GM (2009) Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol 183:2456–2461

    PubMed  Article  CAS  Google Scholar 

  101. Verjans GM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, Laman JD, Langerak AW, Kinchington PR, Osterhaus AD (2007) Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 104:3496–3501

    PubMed  CAS  Article  Google Scholar 

  102. Wagner EK, Bloom DC (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443

    PubMed  CAS  Google Scholar 

  103. Wang K, Lau TY, Morales M, Mont EK, Straus SE (2005a) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79:14079–14087

    PubMed  CAS  Article  Google Scholar 

  104. Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM (2005b) Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102:16055–16059

    PubMed  CAS  Article  Google Scholar 

  105. Wojtasiak M, Jones CM, Sullivan LC, Winterhalter AC, Carbone FR, Brooks AG (2004) Persistent expression of CD94/NKG2 receptors by virus-specific CD8 T cells is initiated by TCR-mediated signals. Int Immunol 16:1333–1341

    PubMed  CAS  Article  Google Scholar 

  106. Zhang CX, Ofiyai H, He M, Bu X, Wen Y, Jia W (2005) Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J Neurovirol 11:256–264

    PubMed  CAS  Article  Google Scholar 

  107. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Derfuss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Held, K., Derfuss, T. Control of HSV-1 latency in human trigeminal ganglia—current overview. J. Neurovirol. 17, 518–527 (2011). https://doi.org/10.1007/s13365-011-0063-0

Download citation

Keywords

  • HSV-1
  • Latency
  • Human
  • CD8+ T cells
  • Neurons