Skip to main content

Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro

  • Chapter
  • First Online:
Varicella-zoster Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 438))

Abstract

Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alandijany T, Roberts APE, Conn KL, Loney C, McFarlane S, Orr A, Boutell C (2018) Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection. PLoS Pathog 14(1):e1006769

    Google Scholar 

  • Alshawaf AJ, Viventi S, Qiu W, D’Abaco G, Nayagam B, Erlichster M, Chana G, Everall I, Ivanusic J, Skafidas E, Dottori M (2018) Phenotypic and functional characterization of peripheral sensory neurons derived from human embryonic stem cells. Sci Rep 8(1):603

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert M, Boyle NM, Stone D, Stensland L, Huang ML, Magaret AS, Galetto R, Rawlings DJ, Scharenberg AM, Jerome KR (2014) In vitro inactivation of latent HSV by targeted mutagenesis using an HSV-specific homing endonuclease. Mol Ther Nucleic Acids 3:e146

    Google Scholar 

  • Aubert M, Madden EA, Loprieno M, DeSilva Feelixge HS, Stensland L, Huang ML, Greninger AL, Roychoudhury P, Niyonzima N, Nguyen T, Magaret A, Galleto R, Stone D, Jerome KR (2016) In vivo disruption of latent HSV by designer endonuclease therapy. JCI Insight 1(14):e88468

    Google Scholar 

  • Aubert M, Strongin DE, Roychoudhury P, Loprieno MA, Haick AK, Klouser LM, Stensland L, Huang ML, Makhsous N, Tait A, De Silva Feelixge HS, Galetto R, Duchateau P, Greninger AL, Stone D, Jerome KR (2020) Gene editing and elimination of latent herpes simplex virus in vivo. Nat Commun 11(1):4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A (2019) Current In vitro models to study varicella zoster virus latency and reactivation. Viruses 11(2):103

    Article  CAS  PubMed Central  Google Scholar 

  • Baringer JR, Swoveland P (1973) Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med 288(13):648–650

    Article  CAS  PubMed  Google Scholar 

  • Barrozo ER, Nakayama S, Singh P, Neumann DM, Bloom DC (2020) Deletion of herpes simplex virus 1 microRNAs miR-H1 and miR-H6 impairs reactivation. J Virol 94(15):e00639-e720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrozo ER, Nakayama S, Singh P, Neumann DM, Bloom DC (2021) Herpes simplex virus 1 MicroRNA miR-H8 is dispensable for latency and reactivation in vivo. J Virol 95(4):e02179-e2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian FO, Rabson AS, Yee CL, Tralka TS (1972) Herpesvirus hominis: isolation from human trigeminal ganglion. Science 178(4058):306–307

    Article  CAS  PubMed  Google Scholar 

  • Baumrin E, Van Voorhees A, Garg A, Feldman SR, Merola JF (2019) A systematic review of herpes zoster incidence and consensus recommendations on vaccination in adult patients on systemic therapy for psoriasis or psoriatic arthritis: from the Medical Board of the National Psoriasis Foundation. J Am Acad Dermatol 81(1):102–110

    Article  PubMed  Google Scholar 

  • Bertke AS, Ma A, Margolis MS, Margolis TP (2013) Different mechanisms regulate productive herpes simplex virus 1 (HSV-1) and HSV-2 infections in adult trigeminal neurons. J Virol 87(11):6512–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertke AS, Swanson SM, Chen J, Imai Y, Kinchington PR, Margolis TP (2011) A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol 85(13):6669–6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard JW, Eade KT, Szucs A, Lo Sardo V, Tsunemoto RK, Williams D, Sanna PP, Baldwin KK (2015) Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci 18(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Breuer J (2018) Molecular genetic insights into varicella zoster virus (VZV), the vOka vaccine strain, and the pathogenesis of latency and reactivation. J Infect Dis 218(suppl_2):S75–S80

    Google Scholar 

  • Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, Goldstein RS (2008) Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differentiation 76(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Brown JR, Conn KL, Wasson P, Charman M, Tong L, Grant K, McFarlane S, Boutell C (2016) SUMO ligase protein inhibitor of activated STAT1 (PIAS1) is a constituent promyelocytic leukemia nuclear body protein that contributes to the intrinsic antiviral immune response to herpes simplex virus 1. J Virol 90(13):5939–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, Wilson AC, Mohr I, Chao MV (2010) Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 8(4):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter-Timofte ME, Hansen AF, Christiansen M, Paludan SR, Mogensen TH (2019) Mutations in RNA polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection. Genes Immun 20(3):214–223

    Article  CAS  PubMed  Google Scholar 

  • Carter-Timofte ME, Paludan SR, Mogensen TH (2018) RNA polymerase III as a gatekeeper to prevent severe VZV infections. Trends Mol Med 24(10):904–915

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Gershon AA, Li Z, Cowles RA, Gershon MD (2011) Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neurovirol 17(6):578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Gershon AA, Li ZS, Lungu O, Gershon MD (2003) Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J Med VirOl 70(Suppl 1):S71-78

    Article  PubMed  Google Scholar 

  • Christensen J, Steain M, Slobedman B, Abendroth A (2011) Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol 85(16):8436–8442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen J, Steain M, Slobedman B, Abendroth A (2013) Varicella-zoster virus glycoprotein I is essential for spread in dorsal root ganglia and facilitates axonal localization of structural virion components in neuronal cultures. J Virol 87(24):13719–13728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Beer T, Cohrs R, Gilden DH (1995) Configuration of latent varicella-zoster virus DNA. J Virol 69(12):8151–8154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen C, Corpet A, Roubille S, Maroui MA, Poccardi N, Rousseau A, Kleijwegt C, Binda O, Texier P, Sawtell N, Labetoulle M, Lomonte P (2018) Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis. PLoS Pathog 14(9):e1007313

    Google Scholar 

  • Cohen JI (2010) Rodent models of varicella-zoster virus neurotropism. Curr Top Microbiol Immunol 342:277–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohrs RJ, Badani H, Baird NL, White TM, Sanford B, Gilden D (2017) Induction of varicella zoster virus DNA replication in dissociated human trigeminal ganglia. J Neurovirol 23(1):152–157

    Article  CAS  PubMed  Google Scholar 

  • Cohrs RJ, Gilden DH (2003) Varicella zoster virus transcription in latently-infected human ganglia. Anticancer Res 23(3A):2063–2069

    CAS  PubMed  Google Scholar 

  • Cohrs RJ, Randall J, Smith J, Gilden DH, Dabrowski C, van Der Keyl H, Tal-Singer R (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74(24):11464–11471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosslin DR, Carrell DS, Burt A, Kim DS, Underwood JG, Hanna DS, Comstock BA, Baldwin E, de Andrade M, Kullo IJ, Tromp G, Kuivaniemi H, Borthwick KM, McCarty CA, Peissig PL, Doheny KF, Pugh E, Kho A, Pacheco J, Hayes MG, Ritchie MD, Verma SS, Armstrong G, Stallings S, Denny JC, Carroll RJ, Crawford DC, Crane PK, Mukherjee S, Bottinger E, Li R, Keating B, Mirel DB, Carlson CS, Harley JB, Larson EB, Jarvik GP (2015) Genetic variation in the HLA region is associated with susceptibility to herpes zoster. Genes Immun 16(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR (2020) Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. Elife 9:e58037

    Google Scholar 

  • Debrus S, Sadzot-Delvaux C, Nikkels AF, Piette J, Rentier B (1995) Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol 69(5):3240–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depledge DP, Kundu S, Jensen NJ, Gray ER, Jones M, Steinberg S, Gershon A, Kinchington PR, Schmid DS, Balloux F, Nichols RA, Breuer J (2014) Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol Biol Evol 31(2):397–409

    Article  CAS  PubMed  Google Scholar 

  • Depledge DP, Ouwendijk WJD, Sadaoka T, Braspenning SE, Mori Y, Cohrs RJ, Verjans G, Breuer J (2018a) A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61. Nat Commun 9(1):1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Depledge DP, Sadaoka T, Ouwendijk WJD (2018b) Molecular aspects of varicella-zoster virus latency. Viruses 10(7):349

    Article  PubMed Central  Google Scholar 

  • Depledge DP, Yamanishi K, Gomi Y, Gershon AA, Breuer J (2016) Deep sequencing of distinct preparations of the live attenuated varicella-zoster virus vaccine reveals a conserved core of attenuating single-nucleotide polymorphisms. J Virol 90(19):8698–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai HD, Sharma K, Shah A, Patoliya J, Patil A, Hooshanginezhad Z, Grabbe S, Goldust M (2021) Can SARS-CoV-2 vaccine increase the risk of reactivation of Varicella zoster? A systematic review. J Cosmet Dermatol 20(11):3350–3361

    Google Scholar 

  • Dohner DE, Adams SG, Gelb LD (1988) Recombination in tissue culture between varicella-zoster virus strains. J Med Virol 24(3):329–341

    Article  CAS  PubMed  Google Scholar 

  • Edwards TG, Bloom DC (2019) Lund human mesencephalic (LUHMES) neuronal cell line supports herpes simplex virus 1 latency in vitro. J Virol 93(6):e02210-e2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber DA, Schaffer PA, Knipe DM (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71(8):5885–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerada C, Steain M, McSharry BP, Slobedman B, Abendroth A (2018) Varicella-zoster virus ORF63 protects human neuronal and keratinocyte cell lines from apoptosis and changes its localization upon apoptosis induction. J Virol 92(12):e00338-e418

    Article  PubMed  PubMed Central  Google Scholar 

  • Gershon AA, Chen J, Gershon MD (2008) A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis 197(Suppl 2):S61-65

    Article  PubMed  Google Scholar 

  • Gershon AA, Gershon MD (2013) Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev 26(4):728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon M, Gershon A (2018) Varicella-zoster virus and the enteric nervous system. J Infect Dis 218(suppl_2):S113–S119

    Google Scholar 

  • Gilden D, Nagel M, Cohrs R, Mahalingam R, Baird N (2015) Varicella zoster virus in the nervous system. F1000Res 4:F1000 Faculty Rev-1356

    Google Scholar 

  • Gilden DH, Wroblewska Z, Kindt V, Warren KG, Wolinsky JS (1978) Varicella-zoster virus infection of human brain cells and ganglion cells in tissue culture. Arch Virol 56(1–2):105–117

    Article  CAS  PubMed  Google Scholar 

  • Giordani NV, Neumann DM, Kwiatkowski DL, Bhattacharjee PS, McAnany PK, Hill JM, Bloom DC (2008) During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes. J Virol 82(12):6056–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goenaga Vazquez Y, Cabanillas F, Concepcion JR, Diaz Miranda OL (2019) Incidence and risk factors for developing herpes zoster among a cohort of patients diagnosed with lymphoma at a community cancer center. Clin Lymphoma Myeloma Leuk 19(3):e153–e158

    Article  PubMed  Google Scholar 

  • Golani-Zaidie L, Borodianskiy-Shteinberg T, Bisht P, Das B, Kinchington PR, Goldstein RS (2019) Bioinformatically-predicted varicella zoster virus small non-coding RNAs are expressed in lytically-infected epithelial cells and neurons. Virus Res 274:197773

    Google Scholar 

  • Goldstein RS, Pomp O, Brokhman I, Ziegler L (2010) Generation of neural crest cells and peripheral sensory neurons from human embryonic stem cells. Methods Mol Biol 584:283–300

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB (2013) Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog 9(8):e1003512

    Google Scholar 

  • Gowrishankar K, Slobedman B, Cunningham AL, Miranda-Saksena M, Boadle RA, Abendroth A (2007) Productive varicella-zoster virus infection of cultured intact human ganglia. J Virol 81(12):6752–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryan S, Kinchington PR, Yang IH, Selariu A, Zhu H, Yee M, Goldstein RS (2012) Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. J Neurovirol 18(6):462–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryan S, Yee MB, Glick Y, Gerber D, Kepten E, Garini Y, Yang IH, Kinchington PR, Goldstein RS (2015) Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons. PLoS One 10(5):e0126081

    Google Scholar 

  • Grose C, Brunel PA (1978) Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 ℃. Infect Immun 19(1):199–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedon JM, Yee MB, Zhang M, Harvey SA, Goins WF, Kinchington PR (2015) Neuronal changes induced by varicella zoster virus in a rat model of postherpetic neuralgia. Virology 482:167–180

    Article  CAS  PubMed  Google Scholar 

  • Haberberger RV, Barry C, Matusica D (2020) Immortalized dorsal root ganglion neuron cell lines. Front Cell Neurosci 14:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafezi W, Lorentzen EU, Eing BR, Muller M, King NJ, Klupp B, Mettenleiter TC, Kuhn JE (2012) Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 8(5):e1002679

    Google Scholar 

  • Hamza MA, Higgins DM, Feldman LT, Ruyechan WT (2007a) The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons. J Neurovirol 13(1):56–66

    Article  CAS  PubMed  Google Scholar 

  • Hamza MA, Higgins DM, Ruyechan WT (2007) Two alphaherpesvirus latency-associated gene products influence calcitonin gene-related peptide levels in rat trigeminal neurons. Neurobiol Dis 25(3):553–560

    Article  CAS  PubMed  Google Scholar 

  • Harrison KS, Zhu L, Thunuguntla P, Jones C (2020) Herpes simplex virus 1 regulates beta-catenin expression in TG neurons during the latency-reactivation cycle. PLoS One 15(3):e0230870

    Google Scholar 

  • Held K, Junker A, Dornmair K, Meinl E, Sinicina I, Brandt T, Theil D, Derfuss T (2011) Expression of herpes simplex virus 1-encoded MicroRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 85(19):9680–9685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood C, Cunningham AL, Slobedman B, Arvin AM, Sommer MH, Kinchington PR, Abendroth A (2006) Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol 80(2):1025–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hope-Simpson RE (1967) Herpes zoster in the elderly. Geriatrics 22(9):151–159

    CAS  PubMed  Google Scholar 

  • Horien C, Grose C (2012) Neurovirulence of varicella and the live attenuated varicella vaccine virus. Semin Pediatr Neurol 19(3):124–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang HF, Wang W, Jiang X, Zeng WB, Shen ZZ, Song YG, Yang H, Liu XJ, Dong X, Zhou J, Sun JY, Yu FL, Guo L, Cheng T, Rayner S, Zhao F, Zhu H, Luo MH (2017) ORF7 of varicella-zoster virus is required for viral cytoplasmic envelopment in differentiated neuronal cells. J Virol 91(12):e00127-e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones C (2013) Bovine herpes virus 1 (BHV-1) and herpes simplex virus type 1 (HSV-1) promote survival of latently infected sensory neurons, in part by inhibiting apoptosis. J Cell Death 6:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy PG, Cohrs RJ (2010) Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 16(6):411–418

    Article  PubMed  Google Scholar 

  • Kennedy PG, Graner MW, Gunaydin D, Bowlin J, Pointon T, Yu X (2020) Varicella-Zoster Virus infected human neurons are resistant to apoptosis. J Neurovirol 26(3):330–337

    Article  PubMed  Google Scholar 

  • Kennedy PG, Grinfeld E, Bontems S, Sadzot-Delvaux C (2001) Varicella-Zoster virus gene expression in latently infected rat dorsal root ganglia. Virology 289(2):218–223

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG, Mogensen TH (2020) Determinants of neurological syndromes caused by varicella zoster virus (VZV). J Neurovirol 26(4):482–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy PG, Montague P, Scott F, Grinfeld E, Ashrafi GH, Breuer J, Rowan EG (2013) Varicella-zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7–23 Nav-1.8 neuroblastoma cell line. PLoS One 8(1):e51570

    Google Scholar 

  • Kennedy PGE, Gershon AA (2018) Clinical features of varicella-zoster virus infection. Viruses 10(11):609

    Article  CAS  PubMed Central  Google Scholar 

  • Kennedy PGE, Mogensen TH (2021) Varicella-zoster virus infection of neurons derived from neural stem cells. Viruses 13(3):485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipe DM (2015) Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity. Virology 479–480:153–159

    Article  PubMed  Google Scholar 

  • Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6(3):211–221

    Article  CAS  PubMed  Google Scholar 

  • Kobiler O, Weitzman MD (2019) Herpes simplex virus replication compartments: from naked release to recombining together. PLoS Pathog 15(6):e1007714

    Google Scholar 

  • Ku CC, Besser J, Abendroth A, Grose C, Arvin AM (2005) Varicella-zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 79(5):2651–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM (2002) Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol 76(22):11425–11433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Ali MA, Kim YJ, Lee G, Cohen JI, Venkatesan A (2017) Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol 91(17):e00640-e717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski DL, Thompson HW, Bloom DC (2009) The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83(16):8173–8181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyratsous CA, Silverstein SJ (2009) Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 83(9):4262–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyratsous CA, Walters MS, Panagiotidis CA, Silverstein SJ (2009) Complementation of a herpes simplex virus ICP0 null mutant by varicella-zoster virus ORF61p. J Virol 83(20):10637–10643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmle L, Goldstein RS, Kinchington PR (2019) Modeling varicella zoster virus persistence and reactivation—closer to resolving a perplexing persistent state. Front Microbiol 10:1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Laing KJ, Ouwendijk WJD, Koelle DM, Verjans G (2018) Immunobiology of varicella-zoster virus infection. J Infect Dis 218(suppl_2):S68–S74

    Google Scholar 

  • Lampert A, Bennett DL, McDermott LA, Neureiter A, Eberhardt E, Winner B, Zenke M (2020) Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiol Pain 8:100055

    Google Scholar 

  • Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25(8):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Lewis ME, Warren KG, Jeffrey VM, Shnitka TK (1982) Factors affecting recovery of latent herpes simplex virus from human trigeminal ganglia. Can J Microbiol 28(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang HL, Zhong FF, Fan JY (2016) Anti-apoptotic function of herpes simplex virus -2 latency-associated transcript RL1 sequence and screening of its encoded microRNAs. Clin Exp Dermatol 41(7):782–791

    Article  CAS  PubMed  Google Scholar 

  • Lomonte P (2016) The interaction between herpes simplex virus 1 genome and promyelocytic leukemia nuclear bodies (PML-NBs) as a hallmark of the entry in latency. Microb Cell 3(11):569–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovato L, Inman M, Henderson G, Doster A, Jones C (2003) Infection of cattle with a bovine herpesvirus 1 strain that contains a mutation in the latency-related gene leads to increased apoptosis in trigeminal ganglia during the transition from acute infection to latency. J Virol 77(8):4848–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalingam R, Gershon A, Gershon M, Cohen JI, Arvin A, Zerboni L, Zhu H, Gray W, Messaoudi I, Traina-Dorge V (2019) Current in vivo models of varicella-zoster virus neurotropism. Viruses 11(6):502

    Article  CAS  PubMed Central  Google Scholar 

  • Markus A, Golani L, Ojha NK, Borodiansky-Shteinberg T, Kinchington PR, Goldstein RS (2017) Varicella-zoster virus expresses multiple small noncoding RNAs. J Virol 91(24):e01710-e1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, Thakor NV, Sarid R, Kinchington PR, Goldstein RS (2011) Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85(13):6220–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markus A, Lebenthal-Loinger I, Yang IH, Kinchington PR, Goldstein RS (2015) An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog 11(6):e1004885

    Google Scholar 

  • Markus A, Waldman Ben-Asher H, Kinchington PR, Goldstein RS (2014) Cellular transcriptome analysis reveals differential expression of pro- and antiapoptosis genes by varicella-zoster virus-infected neurons and fibroblasts. J Virol 88(13):7674–7677

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, da Silva Filipe A, Smollett K, Gu Q, Robertson N, Adams PD, Rai TS, Boutell C (2019) The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathog 15(3):e1007667

    Google Scholar 

  • Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L (2013) Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 3(4):1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG (2003) Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 9(2):194–204

    Article  CAS  PubMed  Google Scholar 

  • Nagel MA, Jones D, Wyborny A (2017) Varicella zoster virus vasculopathy: the expanding clinical spectrum and pathogenesis. J Neuroimmunol 308:112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann DM, Bhattacharjee PS, Giordani NV, Bloom DC, Hill JM (2007) In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatment. J Virol 81(23):13248–13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norberg P, Depledge DP, Kundu S, Atkinson C, Brown J, Haque T, Hussaini Y, MacMahon E, Molyneaux P, Papaevangelou V, Sengupta N, Koay ES, Tang JW, Underhill GS, Grahn A, Studahl M, Breuer J, Bergstrom T (2015) Recombination of globally circulating varicella-zoster virus. J Virol 89(14):7133–7146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunjimi B, Zhang SY, Sorensen KB, Skipper KA, Carter-Timofte M, Kerner G, Luecke S, Prabakaran T, Cai Y, Meester J, Bartholomeus E, Bolar NA, Vandeweyer G, Claes C, Sillis Y, Lorenzo L, Fiorenza RA, Boucherit S, Dielman C, Heynderickx S, Elias G, Kurotova A, Auwera AV, Verstraete L, Lagae L, Verhelst H, Jansen A, Ramet J, Suls A, Smits E, Ceulemans B, Van Laer L, Plat Wilson G, Kreth J, Picard C, Von Bernuth H, Fluss J, Chabrier S, Abel L, Mortier G, Fribourg S, Mikkelsen JG, Casanova JL, Paludan SR, Mogensen TH (2017) Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest 127(9):3543–3556

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouwendijk WJ, Choe A, Nagel MA, Gilden D, Osterhaus AD, Cohrs RJ, Verjans GM (2012) Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J Virol 86(18):10203–10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouwendijk WJ, Flowerdew SE, Wick D, Horn AK, Sinicina I, Strupp M, Osterhaus AD, Verjans GM, Hufner K (2012) Immunohistochemical detection of intra-neuronal VZV proteins in snap-frozen human ganglia is confounded by antibodies directed against blood group A1-associated antigens. J Neurovirol 18(3):172–180

    Article  CAS  PubMed  Google Scholar 

  • Ouwendijk WJD, Depledge DP, Rajbhandari L, Lenac Rovis T, Jonjic S, Breuer J, Venkatesan A, Verjans G, Sadaoka T (2020) Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency. Nat Commun 11(1):6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pergam SA, Limaye AP, A. S. T. I. D. C. o. Practice (2019) Varicella zoster virus in solid organ transplantation: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 33(9):e13622

    Google Scholar 

  • Perng GC, Jones C (2010) Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis 2010:262415

    Google Scholar 

  • Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287(5457):1500–1503

    Article  CAS  PubMed  Google Scholar 

  • Pevenstein SR, Williams RK, McChesney D, Mont EK, Smialek JE, Straus SE (1999) Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 73(12):10514–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23(7):923–930

    Article  CAS  PubMed  Google Scholar 

  • Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, Goldstein RS (2008) PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res 1230:50–60

    Article  CAS  PubMed  Google Scholar 

  • Pugazhenthi S, Nair S, Velmurugan K, Liang Q, Mahalingam R, Cohrs RJ, Nagel MA, Gilden D (2011) Varicella-zoster virus infection of differentiated human neural stem cells. J Virol 85(13):6678–6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahaus M, Desloges N, Wolff MH (2004) Replication of varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation. J Gen Virol 85(Pt 12):3529–3540

    Article  CAS  PubMed  Google Scholar 

  • Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM (2011) Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7(2):e1001266

    Google Scholar 

  • Reichelt M, Zerboni L, Arvin AM (2008) Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol 82(8):3971–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie L, Tate R, Chamberlain LH, Robertson G, Zagnoni M, Sposito T, Wray S, Wright JA, Bryant CE, Gay NJ, Bushell TJ (2018) Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons. Neuropharmacology 135:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MC, Dybas JM, Hughes J, Weitzman MD, Boutell C (2020) The HSV-1 ubiquitin ligase ICP0: modifying the cellular proteome to promote infection. Virus Res 198015

    Google Scholar 

  • Sadaoka T, Depledge DP, Rajbhandari L, Venkatesan A, Breuer J, Cohen JI (2016) In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency. Proc Natl Acad Sci USA 113(17):E2403-2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadaoka T, Schwartz CL, Rajbhandari L, Venkatesan A, Cohen JI (2017) Human embryonic stem cell-derived neurons are highly permissive for varicella-zoster virus lytic infection. J Virol 92(1):e01108-e1117

    PubMed  PubMed Central  Google Scholar 

  • Saito-Diaz K, Street JR, Ulrichs H, Zeltner N (2021) Derivation of peripheral nociceptive, mechanoreceptive, and proprioceptive sensory neurons from the same culture of human pluripotent stem cells. Stem Cell Reports 16(3):446–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmader K, George LK, Burchett BM, Pieper CF, Hamilton JD (1995) Racial differences in the occurrence of herpes zoster. J Infect Dis 171(3):701–704

    Article  CAS  PubMed  Google Scholar 

  • Selariu A, Cheng T, Tang Q, Silver B, Yang L, Liu C, Ye X, Markus A, Goldstein RS, Cruz-Cosme RS, Lin Y, Wen L, Qian H, Han J, Dulal K, Huang Y, Li Y, Xia N, Zhu H (2012) ORF7 of varicella-zoster virus is a neurotropic factor. J Virol 86(16):8614–8624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MM, Mangold CA, Kuny CV, Szpara ML (2017) Differentiated human SH-SY5Y cells provide a reductionist model of herpes simplex virus 1 neurotropism. J Virol 91(23):e00958-17

    Google Scholar 

  • Sinani D, Jones C (2011) Localization of sequences in a protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 that inhibits apoptosis and interferes with Notch1-mediated trans-activation of the bICP0 promoter. J Virol 85(23):12124–12133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloutskin A, Kinchington PR, Goldstein RS (2013) Productive versus non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology 443(2):285–293

    Article  CAS  PubMed  Google Scholar 

  • Sloutskin A, Yee MB, Kinchington PR, Goldstein RS (2014) Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfected. J Virol 88(9):5079–5086

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorel O, Messaoudi I (2018) Varicella virus-host interactions during latency and reactivation: lessons from simian varicella virus. Front Microbiol 9:3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Steain M, Gowrishankar K, Rodriguez M, Slobedman B, Abendroth A (2011) Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J Virol 85(1):626–631

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Bertke AS, Patel A, Margolis TP, Krause PR (2011) Herpes simplex virus 2 microRNA miR-H6 is a novel latency-associated transcript-associated microRNA, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype. J Virol 85(9):4501–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thellman NM, Botting C, Madaj Z, Triezenberg SJ (2017) An immortalized human dorsal root ganglion cell line provides a novel context to study herpes simplex virus 1 latency and reactivation. J Virol 91(12):e00080-e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thellman NM, Triezenberg SJ (2017) Herpes simplex virus establishment, maintenance, and reactivation: in vitro modeling of latency. Pathogens 6(3):28

    Article  PubMed Central  Google Scholar 

  • Thompson RL, Sawtell NM (2001) Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75(14):6660–6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N (2007) A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 81(23):13200–13208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83(20):10677–10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanni EAH, Foley JW, Davison AJ, Sommer M, Liu D, Sung P, Moffat J, Zerboni L, Arvin AM (2020) The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathog 16(12):e1009166

    Google Scholar 

  • Wainger BJ, Buttermore ED, Oliveira JT, Mellin C, Lee S, Saber WA, Wang AJ, Ichida JK, Chiu IM, Barrett L, Huebner EA, Bilgin C, Tsujimoto N, Brenneis C, Kapur K, Rubin LL, Eggan K, Woolf CJ (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Walters MS, Kyratsous CA, Silverstein SJ (2010) The RING finger domain of Varicella-Zoster virus ORF61p has E3 ubiquitin ligase activity that is essential for efficient autoubiquitination and dispersion of Sp100-containing nuclear bodies. J Virol 84(13):6861–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Oliver SL, Sommer M, Rajamani J, Reichelt M, Arvin AM (2011) Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog 7(8):e1002157

    Google Scholar 

  • Warren KG, Marusyk RG, Lewis ME, Jeffrey VM (1982) Recovery of latent herpes simplex virus from human trigeminal nerve roots. Arch Virol 73(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CL, Crnic LS, Pizer LI (1992) Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology 187(1):348–352

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CL, Johnson EM Jr (1987) Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol 61(7):2311–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox CL, Johnson EM Jr (1988) Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 62(2):393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman A, Zhu L, Keel BN, Smith TPL, Jones C (2018) The Wnt Signaling pathway is differentially expressed during the bovine herpesvirus 1 latency-reactivation cycle: evidence that two protein kinases associated with neuronal survival, Akt3 and BMPR2, are expressed at higher levels during latency. J Virol 92(7):e01937-e2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young GT, Gutteridge A, Fox H, Wilbrey AL, Cao L, Cho LT, Brown AR, Benn CL, Kammonen LR, Friedman JH, Bictash M, Whiting P, Bilsland JG, Stevens EB (2014) Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol Ther 22(8):1530–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata HJ, Nakatsugawa M, Moffat JF (2007) Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol 81(2):977–990

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Arvin A (2011) Investigation of varicella-zoster virus neurotropism and neurovirulence using SCID mouse-human DRG xenografts. J Neurovirol 17(6):570–577

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Arvin A (2015) Neuronal subtype and satellite cell tropism are determinants of varicella-zoster virus virulence in human dorsal root Ganglia Xenografts in vivo. PLoS Pathog 11(6):e1004989

    Google Scholar 

  • Zerboni L, Berarducci B, Rajamani J, Jones CD, Zehnder JL, Arvin A (2011) Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J Virol 85(1):98–111

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM (2005) Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci USA 102(18):6490–6495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerboni L, Reichelt M, Arvin A (2010) Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr Top Microbiol Immunol 342:255–276

    CAS  PubMed  Google Scholar 

  • Zerboni L, Reichelt M, Jones CD, Zehnder JL, Ito H, Arvin AM (2007) Aberrant infection and persistence of varicella-zoster virus in human dorsal root ganglia in vivo in the absence of glycoprotein I. Proc Natl Acad Sci USA 104(35):14086–14091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerboni L, Sobel RA, Lai M, Triglia R, Steain M, Abendroth A, Arvin A (2012) Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group a determinants in sensory neurons. J Virol 86(1):578–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Martin-Caraballo M, Hsia SV (2020) Modulation of voltage-gated sodium channel activity in human dorsal root ganglion neurons by herpesvirus quiescent infection. J Virol 94(3):e01823-e1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Selariu A, Warden C, Huang G, Huang Y, Zaccheus O, Cheng T, Xia N, Zhu H (2010) Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog 6:e1000971

    Google Scholar 

  • Zhao H, Zhang C, Hou G, Song J (2015) MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells. Int J Clin Exp Med 8(5):7526–7534

    PubMed  PubMed Central  Google Scholar 

  • Zhu L, Thunuguntla P, Liu Y, Hancock M, Jones C (2017) The beta-catenin signaling pathway stimulates bovine herpesvirus 1 productive infection. Virology 500:91–95

    Article  CAS  PubMed  Google Scholar 

  • Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS (2011) Efficient generation of Schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep 7(2):394–403

    Article  PubMed  Google Scholar 

  • Zimmer B, Ewaleifoh O, Harschnitz O, Lee YS, Peneau C, McAlpine JL, Liu B, Tchieu J, Steinbeck JA, Lafaille F, Volpi S, Notarangelo LD, Casanova JL, Zhang SY, Smith GA, Studer L (2018) Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc Natl Acad Sci USA 115(37):E8775–E8782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors wish to acknowledge the support of awards R01 NS064022 (PRK), R01 AI122640 (PRK, RSG), R21 AI56527 (PRK, RSG), and P30 EY08098 (PRK) from the National Institutes of Health; Awards # 2013072 and 2017259 from the United States-Israel Binational Science Foundation (PRK and RSG); Awards 158/07, 238/11 and 254/16 from Israel Science foundation (RSG); and unrestricted funds from the Research to Prevent Blindness Inc., The Eye & Ear foundation of Pittsburgh (PRK) and the Goode Foundation (RSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Kinchington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldstein, R.S., Kinchington, P.R. (2021). Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro. In: Arvin, A.M., Moffat, J.F., Abendroth, A., Oliver, S.L. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 438. Springer, Cham. https://doi.org/10.1007/82_2021_244

Download citation

Publish with us

Policies and ethics