Skip to main content
Log in

Acoustic differentiation and its relationships with ear size in three Histiotus species (Chiroptera, Vespertilionidae) from Patagonia, Argentina

  • ORIGINAL PAPER
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

In Argentine Patagonia, three species of long-eared brown bats coexist, Histiotus macrotus, H. magellanicus, and H. montanus, which differ by ear length and other characters. Considering that pinna and tragus size and morphology may affect the perception of incoming echoes, we expected that differences in ear morphometry across species would match with interspecific variation in echolocation call structure. We studied echolocation calls of these species, recording calls of free-ranging Histiotus in eight localities from Chubut province (Argentina). We measured morphometric variables (mass, length of ear and tragus, forearm) in captured specimens. We analyzed eight acoustic parameters in 4020 recorded pulses (H. macrotus n = 2020, H. magellanicus n = 1409, and H. montanus n = 591). Principal components (PCA) and discriminant analyses (DFA) revealed that these species clearly segregate in acoustic space, consistent with interspecific differences in ear morphology. Comparatively, H. magellanicus with shorter ears (< 25 mm) emitted higher-frequency calls at short time intervals; by contrast, H. macrotus and H. montanus with longer ears (> 27 mm) emitted lower-frequency calls, in turn differentiating from each other by inter-pulse intervals. MANOVA indicated that these differences were highly significant. Redundancy analysis showed a strong correlation between ear and tragus length and acoustic structure. Our results suggest that these Histiotus species are distinguishable in terms of their bioacoustics, which likely have a functional basis linked to morphological variation of sensory organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Additional acoustics data not included in the manuscript is available from corresponding author.

Code availability

Not applicable.

To be used for life science journals + articles with biological applications

References

  • Aldridge HDJN, Rautenbach IL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Article  Google Scholar 

  • Altringham JD (2011) Bats: from evolution to conservation. 2nd edn. Oxford University Press, New York

  • Arias-Aguilar A, Hintze F, Aguiar LM, Rufray V, Bernard E, Pereira MJR (2018) Who’s calling? Acoustic identification of Brazilian bats. Mammal Res 63:231–253. https://doi.org/10.1007/s13364-018-0367-z

    Article  Google Scholar 

  • Arlettaz R, Jones G, Racey PA (2001) Effect of acoustic clutter on prey detection by bats. Nature 414:742–745

    Article  CAS  PubMed  Google Scholar 

  • Barataud M (2015) Acoustic ecology of European bats. Species identification and studies of their habitats and foraging behaviour. Biotope Editions, Mèze

    Google Scholar 

  • Barclay RM (1999) Bats are not birds-a cautionary note on using echolocation calls to identify bats: a comment. J Mammal 8:290–296

  • Barclay RM, Brigham RM (1991) Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? Amer Naturalist 137:693–703

    Article  Google Scholar 

  • Barclay RM, Brigham RM (2004) Geographic variation in the echolocation calls of bats: a complication for identifying species by their calls. In: Brigham RM, Kalko EKV, Jones G, Parsons S, Limpens HJGA (eds) Bat echolocation research: tools, techniques, and analysis. Bat Conservation International, Texas, pp 144–149

    Google Scholar 

  • Barclay RM, Fullard JH, Jacobs DS (1998) Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can J Zool 77:530–534

    Article  Google Scholar 

  • Barré K, Le Viol I, Julliard R, Pauwels J, Newson SE, Julien JF, Claireau F, Kerbiriou C, Bas Y (2019) Accounting for automated identification errors in acoustic surveys. Methods Ecol Evol 10:1171–1188. https://doi.org/10.1111/2041-210X.13198

    Article  Google Scholar 

  • Barquez RM, Mares MA, Braun JK (1999) The bats of Argentina. Special Publications of the Museum of Texas Tech University, Lubbock

    Book  Google Scholar 

  • Barquez RM, Díaz MM, Montani ME, Pérez MJ (2020) Nueva guía de los murciélagos de Argentina. Publicación especial, 3. Programa de Conservación de los Murciélagos de Argentina, Tucumán

  • Bogdanowicz W, Fenton MB, Daleszczyk K (1999) The relationships between echolocation calls, morphology and diet in insectivorous bats. J Zool 247:381–393

    Article  Google Scholar 

  • Broders HG, Findlay CS, Zheng L (2004) Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. J Mammal 85:273–281

    Article  Google Scholar 

  • Burkart R, Barbaro NO, Sanchez RO, Gomez DA (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales, Programa Desarrollo Institucional Ambiental, Buenos Aires

  • Chaverri G, Quirós OE (2017) Variation in echolocation call frequencies in two species of free-tailed bats according to temperature and humidity. J Acoust Soc Am 142:146–150. https://doi.org/10.1121/1.4992029

    Article  PubMed  Google Scholar 

  • Chen X, Zhao J, Chen YH, Zhou W, Hughes AC (2020) Automatic standardized processing and identification of tropical bat calls using deep learning approaches. Biol Conserv 241:108269. https://doi.org/10.1016/j.biocon.2019.108269

    Article  Google Scholar 

  • Denzinger A, Schnitzler HU (2013) Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol 4:1–15. https://doi.org/10.3389/fphys.2013.00164

    Article  Google Scholar 

  • Denzinger A, Kalko EKV, Tschapka M, Grinnell AD, Schnitzler HU (2016) Guild structure and niche differentiation in echolocating bats. In: Fenton MB, Grinnell AD, Popper AN, Fay RR (eds) Bat bioacoustics. Springer, New York, pp 141–166

    Chapter  Google Scholar 

  • Denzinger A, Tschapka M, Schnitzler HU (2018) The role of echolocation strategies for niche differentiation in bats. Can J Zool 96:171–181. https://doi.org/10.1139/cjz-2017-0161

    Article  Google Scholar 

  • Díaz MM, Ossa G, Barquez RM (2019) Histiotus magellanicus (Chiroptera: Vespertilionidae). Mamm Species 51:18–25. https://doi.org/10.1093/mspecies/sez003

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2020) InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  • Fenton MB (1972) The structure of aerial-feeding bat faunas as indicated by ears and wing elements. Can J Zool 50:287–296

    Article  Google Scholar 

  • Fenton MB (2013) Evolution of echolocation. In: Adams RA, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, pp 47–70

    Chapter  Google Scholar 

  • Fenton MB, Faure PA, Ratcliffe JM (2012) Evolution of high duty cycle echolocation in bats. J Exp Biol 215:2935–2944. https://doi.org/10.1242/jeb.073171

    Article  PubMed  Google Scholar 

  • Ferreira DF, Gibb R, López-Baucells A, Nunes NJ, Jones KE, Rocha R (2022) Species-specific responses to land-use change in island insectivorous bats. J Nat Conserv 67:126177. https://doi.org/10.1016/j.jnc.2022.126177

    Article  Google Scholar 

  • Findlay SV, Barclay RM (2019) Acoustic surveys for bats are improved by taking habitat type into account. Wildl Soc Bull 44:86–93. https://doi.org/10.1002/wsb.1053

    Article  Google Scholar 

  • Gannon WL, Richard E, Tagide N, Michael J (2001) Pinnae and echolocation call differences between Myotis californicus and M. ciliolabrum (Chiroptera: Vespertilionidae). Acta Chiropterol 3:77–91

    Google Scholar 

  • Gardiner JD, Codd JR, Nudds RL (2011) An association between ear and tail morphologies of bats and their foraging style. Can J Zool 89:90–99

    Article  Google Scholar 

  • Giménez AL, Giannini NP (2017) Ecomorphological diversity in the Patagonian assemblage of bats from Argentina. Acta Chiropterol 19:287–303. https://doi.org/10.3161/15081109ACC2017.19.2.006

    Article  Google Scholar 

  • Giménez AL, Giannini NP, Schiaffini MI, Martin GM (2012) New records of the rare Histiotus magellanicus (Chiroptera, Vespertilionidae) and other bats from Central Patagonia, Argentina. Mastozool Neotrop 19:213–224

    Google Scholar 

  • Giménez AL, Giannini NP, Schiaffini MI, Martin GM (2015) Geographic and potential distribution of a poorly known South American bat, Histiotus macrotus (Chiroptera: Vespertilionidae). Acta Chiropterol 17:143–158. https://doi.org/10.3161/15081109ACC2015.17.1.012

    Article  Google Scholar 

  • Giménez AL, Giannini NP, Almeida FC (2019) Mitochondrial genetic differentiation and phylogenetic relationships of three Eptesicus (Histiotus) species in a contact zone in Patagonia. Mastozool Neotrop 26:349–358. https://doi.org/10.31687/saremMN.19.26.2.0.10

    Article  Google Scholar 

  • Giménez AL, Omad GH, De Paz O, Giannini NP (2021) Diet and resource partitioning in Patagonian bats (Chiroptera: Vespertilionidae and Molossidae). Mammal Res 66:467–480. https://doi.org/10.1007/s13364-021-00574-7

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Handley CO, Gardner AL (2008) Genus Histiotus P. Gervais, 1856. In: Gardner AL (ed) Mammals of South America. Volume 1. Marsupials, Xenarthrans, Shrews, and Bats. The University of Chicago Press, Chicago, pp 450–457

  • Jacobs DS, Barclay RMR, Walker MH (2007) The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152:583–594. https://doi.org/10.1007/s00442-007-0679-1

    Article  PubMed  Google Scholar 

  • Jennings NV, Parsons S, Barlow KE, Gannon MR (2004) Echolocation calls and wing morphology of bats from the West Indies. Acta Chiropterol 6:75–90

    Article  Google Scholar 

  • Jones G, Vaughan N, Parsons S (2000) Acoustic identification of bats from directly sampled and time-expanded recordings of vocalization. Acta Chiropterol 2:155–170

    Google Scholar 

  • Jones G, Rydell J (2003) Attack and defense: interactions between echolocating bats and their insect prey. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 301–332

    Google Scholar 

  • Jones G, Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc Lond B Biol Sci 274:905–912. https://doi.org/10.1098/rspb.2006.0200

  • Jung K, Kalko EKV, Von Helversen O (2007) Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J Zool 272:125–137

    Article  Google Scholar 

  • Jung K, Molinari J, Kalko EKV (2014) Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PloS One 9(1):e85279. https://doi.org/10.1371/journal.pone.0085279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalko EKV, Schnitzler HU (1993) Plasticity in echolocation signals of European pipistrelle bats in search flight implications for habitat use and prey detection. Behav Ecol Sociobiol 33:415–428

    Article  Google Scholar 

  • León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–144

  • López-Baucells A, Rocha R, Bobrowiec P, Meyer CF (2014) Echolocation of the big red bat Lasiurus egregius (Chiroptera: Vespertilionidae) and first record from the Central Brazilian Amazon. Stud Neotrop Fauna Environ 49:18–25. https://doi.org/10.1080/01650521.2014.907600

    Article  Google Scholar 

  • Lopez-Baucells A, Torrent L, Rocha R, Pavan AC, Bobrowiec PED, Meyer CFJ (2017) Geographical variation in the high-duty cycle echolocation of the cryptic. Bioacoustics 27:341–357. https://doi.org/10.1080/09524622.2017.1357145

    Article  Google Scholar 

  • López-Baucells A, Torrent L, Rocha R, Bobrowiec PE, Palmeirim JM, Meyer CF (2019) Stronger together: combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys. Ecol Inform 49:45–53. https://doi.org/10.1016/j.ecoinf.2018.11.004

    Article  Google Scholar 

  • López-Baucells A, Yoh N, Rocha R, Bobrowiec PE, Palmeirim JM, Meyer CF (2021) Optimizing bat bioacoustic surveys in human-modified Neotropical landscapes. Ecol Appl 31:e02366. https://doi.org/10.1002/eap.2366

    Article  PubMed  Google Scholar 

  • López-González C, Ocampo-Ramírez C (2021) External ears in Chiroptera: form-function relationships in an ecological context. Acta Chiropterol 23:525–545. https://doi.org/10.3161/15081109ACC2021.23.2.019

    Article  Google Scholar 

  • Luo B, Leiser-Miller L, Santana SE, Zhang L, Liu T, Xiao Y, Liu Y, Feng J (2019) Echolocation call divergence in bats: a comparative analysis. Behav Ecol Sociobiol 73:1–12. https://doi.org/10.1007/s00265-019-2766-9

    Article  CAS  Google Scholar 

  • MacSwiney MCG, Clarke FM, Racey PA (2008) What you see is not what you get: the role of ultrasonic detectors in increasing inventory completeness in neotropical bat assemblages. J Appl Ecol 45:1364–1371. https://doi.org/10.1111/j.1365-2664.2008.01531.x

  • Mancini MCS, Hintze F, de Souza Laurindo R, de Macêdo Mello R, Gregorin R (2022) Tradition vs. innovation: comparing bioacoustics and mist-net results to bat sampling. Bioacoustics 31:575–593. https://doi.org/10.1080/09524622.2021.2008494

  • Moyers Arévalo RL, Amador LI, Almeida FC, Giannini NP (2020) Evolution of body mass in bats: insights from a large supermatrix phylogeny. J Mamm Evol 27:123–138. https://doi.org/10.1007/s10914-018-9447-8

    Article  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B Biol Sci 316:335–427

    Article  Google Scholar 

  • Obrist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. J Exp Biol 180:119–152

    Article  CAS  PubMed  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 5:933–938

    Article  Google Scholar 

  • Ossa G, Bonacic C, Barquez RM (2014) First record of Histiotus laephotis (Thomas, 1916) from Chile and new distributional information for Histiotus montanus (Phillipi and Landbeck, 1861) (Chiroptera, Vespertilionidae). Mammalia 79:457–461

    Google Scholar 

  • Ossa G, Forero L, Novoa F, Bonacic C (2015) Caracterización morfológica y bioacústica de los murciélagos (Chiroptera) de la Reserva Nacional Pampa de Tamarugal. Biodiversidata 3:21–29

    Google Scholar 

  • Parsons S, Jones G (2000) Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J Exp Biol 203:2641–2656

    Article  CAS  PubMed  Google Scholar 

  • Paruelo JM, Golluscio RA, Jobbágy EG, Canevari M, Aguiar MR (2006) Situación ambiental en la Ecorregión Estepa Patagónica. In: Brown A, Martinez Ortiz U, Acerbi M, Corcuera JF (eds) La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina, Buenos Aires, pp 303–313

  • Premoli AC, Aizen MA, Kitzberger T, Raffaele E (2006). Situación ambiental en los Bosques Andino Patagónicos. In: Brown A, Martinez Ortiz U, Acerbi M, Corcuera JF (eds) La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina, Buenos Aires, pp 279–291

  • Rodrigues Silva C, Bernard E (2017) Bioacoustics as an important complementary tool in bat inventories in the Caatinga drylands of Brazil. Acta Chiropterol 19:409–418. https://doi.org/10.3161/15081109ACC2017.19.2.017

    Article  Google Scholar 

  • Rodríguez-Posada ME, Morales-Martínez DM, Ramírez-Chaves HE, Martínez-Medina D, Calderón-Acevedo CA (2021) A new species of long-eared brown bat of the genus Histiotus (Chiroptera) and the revalidation of Histiotus colombiae. Caldasia 43:221–234. https://doi.org/10.15446/caldasia.v43n2.85424

  • Rodríguez-San Pedro A, Simonetti JA (2013) Acoustic identification of four species of bats (Order Chiroptera) in central Chile. Bioacoustics 22:165–172. https://doi.org/10.1080/09524622.2013.763384

    Article  Google Scholar 

  • Rodríguez-San Pedro A, Allendes JL, Carrasco-Lagos P, Moreno RA (2014) Murciélagos de la Región Metropolitana de Santiago, Chile. Seremi del Medio Ambiente Región Metropolitana de Santiago, Universidad Santo Tomás y Programa para la Conservación de los Murciélagos de Chile (PCMCh)

  • Rodríguez-San Pedro A, Barquez RM, Simonetti JA (2015) Histiotus magellanicus (Chiroptera: Vespertilionidae) is not restricted to Subantarctic forests: first record for the Coastal Maulino Forest in central Chile. CheckList 11:1576. https://doi.org/10.15560/11.2.1576

    Article  Google Scholar 

  • Rodríguez-San Pedro A, Allendes JL, Ossa G (2016) Lista actualizada de los murciélagos de Chile con comentarios sobre taxonomía, ecología, y distribución. Biodivers Nat Hist 2:16–39

    Google Scholar 

  • Roehrs ZP, Lack JB, Van Den Bussche RA (2010) Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal 91:1073–1092. https://doi.org/10.1644/09-MAMM-A-325.1

    Article  Google Scholar 

  • Roehrs ZP, Lack JB, Van Den Bussche RA (2011) A molecular phylogenetic reevaluation of the tribe Nycticeiini (Chiroptera: Vespertilionidae). Acta Chiropterol 13:17–31. https://doi.org/10.3161/150811011X578598

    Article  Google Scholar 

  • Rojo Cruz MA, Zuloaga-Aguilar S, Cuevas-Guzmán R, MacSwiney González MC, Iñiguez-Dávalos LI (2019) Influence of vegetation and abiotic factors on habitat use by insectivorous bats in subtropical mountain forests. Mammalian Biology 95:93–101

  • Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. J Zool Lon 258:91–103. https://doi.org/10.1017/S0952836902001231

    Article  Google Scholar 

  • Russo D, Cistrone L, Jones G (2012) Sensory ecology of water detection by bats: a field experiment. PLoS One 7:e48144. https://doi.org/10.1371/journal.pone.0048144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo D, Ancillotto L, Jones G (2018) Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. Can J Zool 96:63–78

    Article  Google Scholar 

  • Rydell J, Arita HT, Santos M, Granados J (2002) Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. J Zool 257:27–36

    Article  Google Scholar 

  • Salinas-Ramos VB, Ancillotto L, Bosso L, Sánchez-Cordero V, Russo D (2019) Interspecific competition in bats: state of knowledge and research challenges. Mammal Rev 50:68–81. https://doi.org/10.1111/mam.12180

    Article  Google Scholar 

  • Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569

    Article  Google Scholar 

  • Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394. https://doi.org/10.1016/S0169-5347(03)00185-X

    Article  Google Scholar 

  • Siemers BM, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  CAS  PubMed  Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380. https://doi.org/10.1007/s00265-005-0060-5

    Article  Google Scholar 

  • Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists (2016) 2016 Guidelines of the american society of mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688

  • SonoBat (2008) Bat call analysis. User’s guide. www.sonobat.com

  • SonoBat (2012) SonoBat bat call analysis software. Version 3.1

  • Stratton C, Irvine KM, Banner K M, Wright WJ, Lausen C, Rae J (2022) Coupling validation effort with in situ bioacoustic data improves estimating relative activity and occupancy for multiple species with crossspecies misclassifications. Methods Ecol Evol 13:1288–1303

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, Van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173

    Chapter  Google Scholar 

  • Ugarte-Núñez JA (2020) Clave de identificación por ecolocación de 20 especies de murciélagos del suroeste de Perú. Ciencia & Desarrollo 27:37–48. https://doi.org/10.33326/26176033.2020.27.996

    Article  Google Scholar 

  • Van Cakenberghe V (2019) Histiotus montanus. In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world Volume 9 Bats. Lynx Editions, Barcelona, p 842

    Google Scholar 

  • Velasco V, Siffredi G (2009) Guía para el reconocimiento de especies de los pastizales de sierras y mesetas occidentales de Patagonia. Ediciones INTA, Bariloche

  • Velazco PM, Almeida FC, Cláudio VC, Giménez AL, Giannini NP (2021) A new species of Histiotus Gervais, 1856 (Chiroptera, Vespertilionidae), from the Pacific Coast of Northern Peru. Am Mus Novit 3979:1–30

    Google Scholar 

  • Wu H, Jiang TL, Müller R, Feng J (2015) The allometry of echolocation call frequencies in horseshoe bats: nasal capsule and pinna size are the better predictors than forearm length. J Zool 297:211–219. https://doi.org/10.1111/jzo.12265

    Article  Google Scholar 

  • Wund MA (2006) Variation in the echolocation calls of little brown bats (Myotis lucifugus) in response to different habitats. Am Midl Nat 156:99–108. https://doi.org/10.1674/0003-0031(2006)156[99:VITECO]2.0.CO;2

    Article  Google Scholar 

  • Zhao H, Zhang S, Zuo M, Zhou J (2003) Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool Lon 259:189–195. https://doi.org/10.1017/S0952836902003199

    Article  Google Scholar 

  • Wildlife Acoustics Inc (2019) Kaleidoscope (non-licence). Version 5.1.9g

  • Wright WJ, Irvine KM, Almberg ES, Litt AR (2019) Modelling misclassification in multi species acoustic data when estimating occupancy and relative activity. Methods Ecol Evol 11:71–81

Download references

Acknowledgements

We especially thank to Dirección de Fauna y Flora Silvestre; Subsecretaría de Conservación y Áreas Protegidas of Chubut Province; and Administración de Parques Nacionales that kindly granted research permits. We are grateful to the park rangers from APN Nant y Fall and ANP Piedra Parada for their help during field work. We especially thank to Dr. Gonzalo Pérez Suárez for his management in carrying out the project Echolocation of Patagonian bats; Francisca Cuhna Almeida and Jesus de Lucas Veguillas also assisted during field work; and Dr. Gabriel Martin for his revision and comments on the manuscript.

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET); Ciencia y Técnica, Universidad Nacional de la Patagonia San Juan Bosco (Proyecto de Investigación N°1526, Resolución Rectoral Nº R/9 362–2019); and Universidad de Alcalá (Programa Giner de los Ríos 2018, grant to Analía Laura Giménez). The funding sources had no involvement in the development of the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, and all read and approved the final manuscript; ALG and ODP conducted field data collection, acoustics analysis, and manuscript writing and editing; NPG contributed statistical analyses and manuscript writing and editing. All co-authors read and approved the final manuscript.

Corresponding author

Correspondence to Analía Laura Giménez.

Ethics declarations

Ethics approval

We followed the guidelines of Sikes et al. (2016) for mammal fieldwork and the legal requirements in the country and province for the care of animals. The study was conducted under the capture permits granted by Dirección de Fauna y Flora Silvestre (Disp. Nº 74/2019-DFyFS-M.P.), Subsecretaría de Conservación y Áreas Protegidas (Disp. Nº 072/19-SsCyAP) of Chubut province and Administración de Parques Nacionales (Argentina, DRPN Nº 1049).

Consent to participate

The manuscript has not been sent to any other journal and has the approval of all co-authors.

Consent for publication

The manuscript has been approved by all co-authors for its publication in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Facundo Luna

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 KB)

Appendix

Appendix

Geographic coordinates (degree, minute, and second) of sampling localities of three Histiotus species in Chubut province (Argentina).

(1) Área Natural Protegida (ANP) Lago Baguilt, 43°16′10.57″S, 71°39′44.29″W. (2) Área Natural Protegida (ANP) Nant y Fall, 43°11′25″S, 71° 28′19″W. (3) Área Natural Protegida (ANP) Piedra Parada, 42°38′30″S, 70°05′59″W. (4) El Sombrero on Provincial Road 35 at ca. 50 km from Paso de Indios town, 44°03′03″S, 68°36′18.32″W. (5) Estancia El Principio, 42°59′27″S, 71°24′60″W. (6) Río Colihuay, Parque Nacional Los Alerces (PNLA), 42°40′40″S, 71°41′07″W. (7) Río Corinto on Provincial Road 34 at ca. 15 km from Trevelin City, 43°04′47.38″S, 71°18′23.55″W. (8) Río Percey, on Provincial Road 71 at ca. 17 km from Esquel City, 42°59′4.92″S, 71°29′18.96″W.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giménez, A.L., De Paz, Ó. & Giannini, N.P. Acoustic differentiation and its relationships with ear size in three Histiotus species (Chiroptera, Vespertilionidae) from Patagonia, Argentina. Mamm Res 68, 383–395 (2023). https://doi.org/10.1007/s13364-023-00688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-023-00688-0

Keywords

Navigation