Real-Time Analysis and Signal Optimization for Charge Detection Mass Spectrometry

  • Benjamin E. Draper
  • Martin F. JarroldEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article


Charge detection mass spectrometry (CDMS) is an important tool for measuring mass distributions for high mass samples and heterogeneous mixtures. In CDMS, single ions are trapped and their m/z and charge are measured simultaneously. As a single particle technique, the average signal must be optimized to maximize the number of single ion trapping events. If the average signal is too small, most of the trapping events will be empty, and if the average signal is too large, most of the trapping events will contain multiple ions. In recent embodiments, the time domain signal from the trapped ion is analyzed by fast Fourier transforms. The analysis time is much longer that the data collection time which precludes real-time optimization of the experimental conditions. In this paper, we describe the implementation of CDMS with real-time analysis. Processing the data in real time allows the average signal intensities to be dynamically optimized to maximize the number of single ion trapping events. Real-time analysis also allows the experimental settings to be optimized in a timely manner to target specific mass regimes to maximize the useful information content of the measurements.

Graphical Abstract



Charge detection mass spectrometry CDMS Real time analysis 



This material is based upon work supported by the National Science Foundation under Grant Number CHE–1531823.


  1. 1.
    Snijder, J., Rose, R.J., Veesler, D., Johnson, J.E., Heck, A.J.R.: Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Edit. 52, 4020–4023 (2013)CrossRefGoogle Scholar
  2. 2.
    Keifer, D.Z., Jarrold, M.F.: Single-molecule mass spectrometry. Mass Spectrom. Rev. 36, 715–733 (2017)CrossRefGoogle Scholar
  3. 3.
    Shelton, H., Hendricks, C.D., Wuerker, R.F.: Electrostatic acceleration of microparticles to Hypervelocities. J. App. Phys. 31, 1243–1246 (1960)CrossRefGoogle Scholar
  4. 4.
    Fuerstenau, S.D., Benner, W.H.: Molecular Weight Determination of Megadalton-DNA Electrospray Ions Using Charge Detection Mass Spectrometry. Rapid Commun. Mass Sp. 9, 15281538 (1995)CrossRefGoogle Scholar
  5. 5.
    Benner, W.H.: A Gated Electrostatic Ion Trap to Repetitiously Measure the Charge and m/z of Large Electrospray Ions. Anal. Chem. 69, 4162–4168 (1997)CrossRefGoogle Scholar
  6. 6.
    Doussineau, T., Désert, A., Lambert, O., Taveau, J.-C., Lansalot, M., Dugourd, P., Bourgeat-Lami, E., Ravaine, S., Duguet, E., Antoine, R.: Charge Detection Mass Spectrometry for the Characterization of Mass and Surface Area of Composite Nanoparticles. J. Phys. Chem. C. 119, 10844–10849 (2015)CrossRefGoogle Scholar
  7. 7.
    Doussineau, T., Kerleroux, M., Dagany, X., Clavier, C., Barbaire, M., Maurelli, J., Antione, R., Dugourd, P.: Charging Megadalton Poly(ethylene oxides)s by Electrospray Ionization. A Charge Detection Mass Spectrometry Study. Rapid Commun. Mass Sp. 15, 617–623 (2011)CrossRefGoogle Scholar
  8. 8.
    Doussineau, T., Mathevon, C., Altamura, L., Vendrely, C., Dugourd, P., Forge, V., Antoine, R.: Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry. Angew. Chem. Int. Edit. 55, 2340–2344 (2016)CrossRefGoogle Scholar
  9. 9.
    Elliot, A.G., Harper, C.C., Lin, H.-W., Williams, E.R.: Mass, Mobility and MSn Measurements of Single Ions Using Charge Detection Mass Spectrometry. Analyst. 142, 2760–2769 (2017)CrossRefGoogle Scholar
  10. 10.
    Contino, N.C., Jarrold, M.F.: Charge Detection Mass Spectrometry for Single Ions With a Limit of Detection of 30 Charges. Int. J. Mass Spectrom. 345–347, 153–159 (2013)CrossRefGoogle Scholar
  11. 11.
    Pierson, E.E., Keifer, D.Z., Selzer, L., Lee, L.S., Contino, N.C., Wang, J.C.-Y., Zlotnick, A., Jarrold, M.F.: Detection of Late Intermediates in Virus Capsid Assembly by Charge Detection Mass Spectrometry. J. Am. Chem. Soc. 136, 3536–3541 (2014)CrossRefGoogle Scholar
  12. 12.
    Lutomski, C.A., Lyktey, N.A., Zhao, Z., Pierson, E.E., Zlotnick, A., Jarrold, M.F.: HBV Capsid Completion Occurs Through Error Correction. J. Am. Chem. Soc. 139, 16932–16938 (2017)CrossRefGoogle Scholar
  13. 13.
    Keifer, D.Z., Motwani, T., Teschke, C.M., Jarrold, M.F.: Measurement of the Accurate Mass of a 50 MDa Infectious Virus. Rapid Commun. Mass Sp. 30, 1957–1962 (2016)CrossRefGoogle Scholar
  14. 14.
    Motwani, T., Lokareddy, R.K., Dunbar, C.A., Cortines, J.R., Jarrold, M.F., Cingolani, G., Teschke, C.M.: A Viral Scaffolding Protein Triggers Portal Ring Oligomerization and Incorporation During Procapsid Assembly. Science Advances. 3, e1700423 (2017)CrossRefGoogle Scholar
  15. 15.
    Pierson, E.E., Keifer, D.Z., Asokan, A., Jarrold, M.F.: Resolving Adeno-Associated Viral Particle Diversity With Charge Detection Mass Spectrometry. Anal. Chem. 88, 6718–6725 (2016)CrossRefGoogle Scholar
  16. 16.
    Keifer, D.Z., Pierson, E.E., Jarrold, M.F.: Charge detection mass spectrometry: weighing heavier things. Analyst. 142, 1654–1671 (2017)CrossRefGoogle Scholar
  17. 17.
    Fraser, G.W.: The ion detection efficiency of microchannel plates (MCPs). Int. J. Mass Spectrom. 215, 13–30 (2002)CrossRefGoogle Scholar
  18. 18.
    Gilmore, I.S., Seah, M.P.: Ion detection efficiency in SIMS: Dependencies on Energy, Mass and Composition for Microchannel Plates used in Mass Spectrometry. Int. J. Mass Spectrom. 202, 217–229 (2000)CrossRefGoogle Scholar
  19. 19.
    Contino, N.C., Pierson, E.E., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry with resolved charge states. J. Am. Soc. Mass Spectrom. 24, 101–108 (2013)CrossRefGoogle Scholar
  20. 20.
    Pierson, E.E., Contino, N.C., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry for single ions with an uncertainty in the charge measurement of 0.65 e. J. Am. Soc. Mass Spectrom. 26, 1213–1220 (2015)CrossRefGoogle Scholar
  21. 21.
    Keifer, D.Z., Shinholt, D.L., Jarrold, M.F.: Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87, 10330–10337 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations