Skip to main content

Advertisement

Log in

Identification and Affinity-Quantification of ß-Amyloid and α-Synuclein Polypeptides Using On-Line SAW-Biosensor-Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS- acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (KD) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer’s disease and Parkinson’s disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vo-Dinh, T., Cullum, B.: Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 366, 540–551 (2000)

    Article  CAS  Google Scholar 

  2. George, A.J.: Use of biosensors to measure the kinetics of antibody-antigen interactions. Methods Mol. Med. 40, 363–72 (2000)

    CAS  Google Scholar 

  3. Xu, Y., Yang, X., Wang, E.: Review: aptamers in microfluidic chips. Anal. Chim. Acta. 683(1), 12–20 (2010)

    Article  CAS  Google Scholar 

  4. Boozer, C., Kim, G., Cong, S., Guan, H., Londergan, T.: Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 17(4), 400–405 (2006)

    Article  CAS  Google Scholar 

  5. Kausaite, A., Ramanaviciene, A., Mostovojus, V., Ramanavicius, A.: Surface plasmon resonance and its application to biomedical research. Medicina (Kaunas) 43(5), 355–365 (2007)

    Google Scholar 

  6. Tuantranont, A., Wisitsora-at, A., Sritongkham, P., Jaruwongrungsee, K.: A review of monolithic multichannel quartz crystal microbalance: a review. Anal. Chim. Acta. 687(2), 114–128 (2011)

    Article  CAS  Google Scholar 

  7. Cooper, M.A., Singleton, V.T.: A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J. Mol. Recognit. 20(3), 154–184 (2007)

    Article  CAS  Google Scholar 

  8. Marx, K.A.: The Quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells piezoelectric sensors. In: Steinem, C., Janshoff, A. (eds.) vol. 5, pp. 371–424. Springer, Berlin Heidelberg (2007)

  9. Li, J., Schantz, A., Schwegler, M., Shankar, G.: Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by Octet biolayer interferometry. J. Pharm. Biomed. Anal. 54(2), 286–294 (2011)

    Article  CAS  Google Scholar 

  10. Concepcion, J., Witte, K., Wartchow, C., Choo, S., Yao, D., Persson, H., Wei, J., Li, P., Heidecker, B., Ma, W., Varma, R., Zhao, L.-S., Perillat, D., Carricato, G., Recknor, M., Du, K., Ho, H., Ellis, T., Gamez, J., Howes, M., Phi-Wilson, J., Lockard, S., Zuk, R., Tan, H.: Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb. Chem. High Throughput Screen. 12(8), 791–800 (2009)

    Article  CAS  Google Scholar 

  11. Gronewold, T.M.A.: Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal. Chim. Acta. 603(2), 119–128 (2007)

    Article  CAS  Google Scholar 

  12. Länge, K., Rapp, B., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)

    Article  Google Scholar 

  13. Dragusanu, M., Petre, B.A., Slamnoiu, S., Vlad, C., Tu, T., Przybylski, M.: On-line bioaffinity-electrospray mass spectrometry for simultaneous detection, identification, and quantification of protein–ligand interactions. J. Am. Soc. Mass Spectrom. 21(10), 1643–1648 (2010)

    Article  CAS  Google Scholar 

  14. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17(1), 1–35 (1998)

    Article  CAS  Google Scholar 

  15. Marshall, A.G., Hendrickson, C.L., Emmett, M.R., Rodgers, R.P., Blakney, G.T., Nilsson, C.L.: Fourier transform ion cyclotron resonance: state of the art. Eur. J. Mass Spectrom. 13(1), 57–59 (2007)

    Article  CAS  Google Scholar 

  16. Vlad, C., Lindner, K., Karreman, C., Schildknecht, S., Leist, M., Tomczyk, N., Rontree, J., Langridge, J., Danzer, K., Ciossek, T., Petre, A., Gross, M.L., Hengerer, B., Przybylski, M.: Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson's disease protein alpha-synuclein as revealed by ion mobility mass spectrometry. Chem. Biochem. 12(18), 2740–2744 (2011)

    CAS  Google Scholar 

  17. McLaurin, J., Cecal, R., Kierstead, M.E., Tian, X., Phinney, A.L., Manea, M., French, J.E., Lambermon, M.H., Darabie, A.A., Brown, M.E., Janus, C., Chishti, M.A., Horne, P., Westaway, D., Fraser, P.E., Mount, H.T., Przybylski, M., St. George-Hyslop, P.: Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat. Med. 8(11), 1263–1269 (2002)

    Article  CAS  Google Scholar 

  18. Lindner, K.: Oligomerization-aggregation and fragmentation of synuclein polypeptides revealed by mass spectrometry. Dissertation, University of Konstanz (2014)

  19. Juszczyk, P., Paraschiv, G., Szymanska, A., Kolodziejczyk, A.S., Rodziewicz-Motowidlo, S., Grzonka, Z., Przybylski, M.: Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J. Med. Chem. 52(8), 2420–2428 (2009)

    Article  CAS  Google Scholar 

  20. Cozma, A.: Development of a software for performing automated on-line bioaffinity-mass spectrometry. Diploma Thesis, University of Konstanz (2012)

  21. Susnea, I., Bunk, S., Wendel, A., Hermann, C., Przybylski, M.: Biomarker candidates of Chlamydophila pneumoniae proteins and protein fragments identified by affinity-proteomics using FTICR-MS and LC-MS/MS. J. Am. Soc. Mass Spectrom. 22(4), 784–788 (2011)

    Article  CAS  Google Scholar 

  22. Freichel, C., Neumann, M., Ballard, T., Muller, V., Woolley, M., Ozmen, L., Borroni, E., Kretzschmar, H.A., Haass, C., Spooren, W., Kahle, P.J.: Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol. Aging 28(9), 1421–1435 (2007)

    Article  CAS  Google Scholar 

  23. Maulet, Y., Cox, J.A.: Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 22, 5680–5686 (1983)

    Article  CAS  Google Scholar 

  24. Wang, Y.J., Zhou, H.D., Zhou, X.F.: Clearance of amyloid-beta in Alzheimer's disease: progress, problems, and perspectives. Drug Discov. Today 11(19–20), 931–938 (2006)

    Article  CAS  Google Scholar 

  25. Dodel, R., Bacher, M., Przybylski, M., Stefanescu, R., Manea, M.: Diagnosis of Alzheimer’s disease and other neurodementing disorders. Patent International Application no.: PCT/IB2008/000456, Pub. no.: WO/2008/084402, European Patent Office (2008)

  26. Crews, L., Tsigelny, I., Hashimoto, M., Masliah, E.: Role of synucleins in Alzheimer’s disease. Neurotox. Res. 16(3), 306–317 (2009)

    Article  CAS  Google Scholar 

  27. Vlad, C.: Oligomerization, degradation, and aggregation reactions and products of synuclein polypeptides related to Parkinson’s Disease. Dissertation, University of Konstanz (2011)

  28. Tau (τ 5) monoclonal antibody, purified, catalog number SIG-39413. Available at: https://store.crpinc.com/datasheet.aspx?Catalogno=SIG-39413. Accessed 23 May 2013

Download references

Acknowledgments

This work was supported in part by grant KF2026662 from the Bundesministerium für Wirtschaft und Technologie, Berlin, Germany. Support by the European Union within the Marie Curie IRSES project Integrating High Performance Mass Spectrometry Tools with Applications in Life Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Przybylski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 49 kb)

Figure S1

(PPT 104 kb)

Figure S2

(PPT 70 kb)

Figure S3

(PPT 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slamnoiu, S., Vlad, C., Stumbaum, M. et al. Identification and Affinity-Quantification of ß-Amyloid and α-Synuclein Polypeptides Using On-Line SAW-Biosensor-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1472–1481 (2014). https://doi.org/10.1007/s13361-014-0904-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0904-1

Keywords

Navigation