Skip to main content

Advertisement

Log in

A label-free MALDI TOF MS-based method for studying the kinetics and inhibitor screening of the Alzheimer’s disease drug target β-secretase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) is a well-established method with a unique set of qualities including sensitivity, minute sample consumption, and label-free detection, all of which are highly desired in enzyme assays. On the other hand, the application of MALDI TOF MS is usually limited by high concentrations of MS-incompatible compounds in the reaction mixture such as salts or organic solvents. Here, we introduce kinetic and inhibition studies of β-secretase (BACE1), a key enzyme of the progression of Alzheimer’s disease. Compatibility of the enzyme assay with MALDI TOF MS was achieved, providing both a complex protocol including a desalting step designed for rigorous kinetic studies and a simple mix-and-measure protocol designed for high-throughput inhibitor screening. In comparison with fluorescent or colorimetric assays, MALDI TOF MS represents a sensitive, fast, and label-free technique with minimal sample preparation. In contrast to other MS-based methodological approaches typically used in drug discovery processes, such as a direct injection MS or MS-coupled liquid chromatography or capillary electrophoresis, MALDI TOF MS enables direct analysis and is a highly suitable approach for high-throughput screening. The method’s applicability is strongly supported by the high correlation of the acquired kinetic and inhibition parameters with data from the literature as well as from our previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AcOH:

Acetic acid

AcONa:

Sodium acetate

AcONH4 :

Ammonium acetate

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid β peptide

BACE1:

β-secretase

CE-ESI MS:

Capillary electrophoresis coupled to mass spectrometry with electrospray ionization

CHCA:

α-cyano-4-hydroxycinnamic acid

DMSO:

Dimethyl sulfoxide

ESI:

Electrospray ionization

FRET:

Fluorescence resonance energy transfer

IB:

Incubation buffer

IC 50 :

Half-maximal inhibitory concentration

K M :

Michaelis constant

MALDI MS:

Matrix-assisted laser desorption/ionization mass spectrometry

MALDI TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MS:

Mass spectrometry

QTOF:

Quadrupole time-of-flight

S/N :

Signal-to-noise ratio

TFA:

Trifluoracetic acid

References

  1. Dementia. World Health Organization. http://www.who.int/mediacentre/factsheets/fs362/en/. 2017. Accessed 2 March 2018.

  2. Glenner G, Wong C. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885–90. https://doi.org/10.1016/S0006-291X(84)80190-4.

    Article  CAS  Google Scholar 

  3. Lacor PN, Buniel MC, Furlow PW, Sanz Clemente A, Velasco PT, Wood M, et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27(4):796–807. https://doi.org/10.1523/jneurosci.3501-06.2007.

    Article  CAS  PubMed  Google Scholar 

  4. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci. 2001;4:231.

    Article  CAS  Google Scholar 

  5. Cole SL, Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener. 2007;2(1):22.

    Article  Google Scholar 

  6. Mancini F, De Simone A, Andrisano V. Beta-secretase as a target for Alzheimer’s disease drug discovery: an overview of in vitro methods for characterization of inhibitors. Anal Bioanal Chem. 2011;400(7):1979–96.

    Article  CAS  Google Scholar 

  7. Grüninger-Leitch F, Schlatter D, Küng E, Nelböck P, Döbeli H. Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. J Biol Chem. 2002;277(7):4687–93.

    Article  Google Scholar 

  8. Mancini F, Naldi M, Cavrini V, Andrisano V. Multiwell fluorometric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors. Anal Bioanal Chem. 2007;388(5–6):1175–83.

    Article  CAS  Google Scholar 

  9. Mancini F, Andrisano V. Development of a liquid chromatographic system with fluorescent detection for β-secretase immobilized enzyme reactor on-line enzymatic studies. J Pharm Biomed Anal. 2010;52(3):355–61.

    Article  CAS  Google Scholar 

  10. Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D, et al. Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem. 2013;85(7):3660–6.

    Article  CAS  Google Scholar 

  11. Liu R, Liu Y-C, Meng J, Zhu H. Zhang X. A microfluidics-based mobility shift assay to identify new inhibitors of β-secretase for Alzheimer’s disease. Anal Bioanal Chem. 2017;409(28):6635–42.

    Article  CAS  Google Scholar 

  12. Schejbal J, Slezáčková L, Řemínek R, Glatz Z. A capillary electrophoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer’s disease therapeutics. J Chromatogr A. 2017;1487:235–41.

    Article  CAS  Google Scholar 

  13. Greis K. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom Rev. 2007;26(3):324–39. https://doi.org/10.1002/mas.20127.

    Article  CAS  PubMed  Google Scholar 

  14. Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7(5):355–70.

    Article  CAS  Google Scholar 

  15. Kang M, Tholey A, Heinzle E. Application of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the measurement of enzyme activities. Rapid Commun Mass Spectrom. 2001;15(15):1327–33. https://doi.org/10.1002/rcm.376.

    Article  CAS  PubMed  Google Scholar 

  16. Bungert D, Heinzle E, Tholey A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal Biochem. 2004;326(2):167–75. https://doi.org/10.1016/j.ab.2003.11.013.

    Article  CAS  PubMed  Google Scholar 

  17. Ritorto M, Ewan R, Perez-Oliva A, Knebel A, Buhrlage S, Wightman M, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun. 2014;5 https://doi.org/10.1038/ncomms5763.

  18. Greis K, Zhou S, Burt T, Carr A, Dolan E, Easwaran V, et al. MALDI-TOF MS as a label-free approach to rapid inhibitor screening. J Am Soc Mass Spectrom. 2006;17(6):815–22. https://doi.org/10.1016/j.jasms.2006.02.019.

    Article  CAS  PubMed  Google Scholar 

  19. Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, et al. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem. 2014;456:25–31. https://doi.org/10.1016/j.ab.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  20. Patrie S, Roth M, Plymire D, Maresh E, Zhang J. Measurement of blood protease kinetic parameters with self-assembled mono layer ligand binding assays and label-free MALDI-TOF MS. Anal Chem. 2013;85(21):10597–604. https://doi.org/10.1021/ac402739z.

    Article  CAS  PubMed  Google Scholar 

  21. Beeman K, Baumgartner J, Laubenheimer M, Hergesell K, Hoffmann M, Pehl U, et al. Integration of an in situ MALDI-based high-throughput screening process: a case study with receptor tyrosine kinase c-MET. SLAS Discov. 2017;22(10):1203–10. https://doi.org/10.1177/2472555217727701.

    Article  CAS  PubMed  Google Scholar 

  22. Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, et al. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal Bioanal Chem. 2017;409(15):3767–77.

    Article  CAS  Google Scholar 

  23. Zovo K, Helk E, Karafin A, Tõugu V, Palumaa P. Label-free high-throughput screening assay for inhibitors of Alzheimer’s amyloid-β peptide aggregation based on MALDI MS. Anal Chem. 2010;82(20):8558–65.

    Article  CAS  Google Scholar 

  24. Van Loco J, Elskens M, Croux C, Beernaert H. Linearity of calibration curves: use and misuse of the correlation coefficient. Accred Qual Assur. 2002;7(7):281–5.

    Article  Google Scholar 

  25. Leite J, Hajivandi M, Diller T, Pope R. Removal of sodium and potassium adducts using a matrix additive during matrix-associated laser desorption/ionization time-of-flight mass spectrometric analysis of peptides. Rapid Commun Mass Spectrom. 2004;18(23):2953–9. https://doi.org/10.1002/rcm.1711.

    Article  CAS  PubMed  Google Scholar 

  26. Beavis R, Chait B. Matrix-assisted laser desorption ionization mass-spectrometry of proteins. High Resolution Separation and Analysis of Biological Macromolecules, Pt A. 1996;270:519–51.

  27. Řemínek R, Slezáčková L, Schejbal J, Glatz Z. Development and comprehensive comparison of two on-line capillary electrophoretic methods for β-secretase inhibitor screening. J Chromatogr A. 2017;1518:89–96.

    Article  Google Scholar 

  28. May PC, Willis BA, Lowe SL, Dean RA, Monk SA, Cocke PJ, et al. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J Neurosci. 2015;35(3):1199–210.

    Article  Google Scholar 

  29. May P, Boggs L, Brier R, Calligaro D, Citron M, Day T, et al. Preclinical characterization of LY2886721: a BACE1 inhibitor in clinical development for early Alzheimer’s disease. Alzheimers Dement. 2012;8(4):704–5. https://doi.org/10.1016/j.jalz.2012.05.235.

    Article  Google Scholar 

  30. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature. 1999;402(6761):537.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation (GA16-06106S), the Grant Agency of Masaryk University (MUNI/G/0974/2016), and the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Preisler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machálková, M., Schejbal, J., Glatz, Z. et al. A label-free MALDI TOF MS-based method for studying the kinetics and inhibitor screening of the Alzheimer’s disease drug target β-secretase. Anal Bioanal Chem 410, 7441–7448 (2018). https://doi.org/10.1007/s00216-018-1354-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1354-6

Keywords

Navigation