Skip to main content
Log in

Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

  • Focus: Advancing High Performance Mass Spectrometry: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Arrays of chemically etched emitters with individualized sheath gas capillaries were developed to enhance electrospray ionization (ESI) efficiency at subambient pressures. By incorporating the new emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, both ionization efficiency and ion transmission efficiency were significantly increased, providing enhanced sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses of conventional ESI-mass spectrometry (MS) interfaces by placing the emitter in the first reduced pressure region of the instrument. The new ESI emitter array design developed in this study allows individualized sheath gas around each emitter in the array making it possible to generate an array of uniform and stable electrosprays in the subambient pressure (10 to 30 Torr) environment for the first time. The utility of the new emitter arrays was demonstrated by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared under different ESI source and interface configurations including a standard atmospheric pressure single ESI emitter/heated capillary, single emitter/SPIN and multi-emitter/SPIN configurations using an equimolar solution of nine peptides. The highest instrument sensitivity was observed using the multi-emitter/SPIN configuration in which the sensitivity increased with the number of emitters in the array. Over an order of magnitude MS sensitivity improvement was achieved using multi-emitter/SPIN compared with using the standard atmospheric pressure single ESI emitter/heated capillary interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Page, J.S., Marginean, I., Baker, E.S., Kelly, R.T., Tang, K., Smith, R.D.: Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet. J. Am. Soc. Mass Spectrom. 20, 2265–2272 (2009)

    Article  CAS  Google Scholar 

  2. Page, J.S., Kelly, R.T., Tang, K., Smith, R.D.: Ionization and transmission efficiency in an electrospray ionization-mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18, 1582–1590 (2007)

    Article  CAS  Google Scholar 

  3. Kebarle, P., Tang, L.: From ions in solution to ions in the gas-phase—the mechanism of electrospray mass spectrometry. Anal. Chem. 65, A972–A986 (1993)

    Google Scholar 

  4. Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass-spectrometry-electrospray ionization. Anal. Chem. 62, 882–899 (1990)

    Article  CAS  Google Scholar 

  5. Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001)

    Article  CAS  Google Scholar 

  6. Kim, T., Udseth, H.R., Smith, R.D.: Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface. Anal. Chem. 72, 5014–5019 (2000)

    Article  CAS  Google Scholar 

  7. Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A.A., Smith, R.D.: Improving mass spectrometer sensitivity using a high-pressure electrodynamic ion funnel interface. J. Am. Soc. Mass Spectrom. 17, 1299–1305 (2006)

    Article  CAS  Google Scholar 

  8. Schneider, B.B., Javaheri, H., Covey, T.R.: Ion sampling effects under conditions of total solvent consumption. Rapid Commun. Mass Spectrom. 20, 1538–1544 (2006)

    Article  CAS  Google Scholar 

  9. Pagnotti, V.S., Inutan, E.D., Marshall, D.D., McEwen, C.N., Trimpin, S.: Inlet ionization: a new highly sensitive approach for liquid chromatography/mass spectrometry of small and large molecules. Anal. Chem. 83, 7591–7594 (2011)

    Article  CAS  Google Scholar 

  10. Wang, B., Inutan, E., Trimpin, S.: A new approach to high sensitivity liquid chromatography-mass spectrometry of peptides using nanoflow solvent assisted inlet ionization. J. Am. Soc. Mass Spectrom. 23, 442–445 (2012)

    Article  CAS  Google Scholar 

  11. Pagnotti, V.S., Chakrabarty, S., Harron, A.F., McEwen, C.N.: Increasing the sensitivity of liquid introduction mass spectrometry by combining electrospray ionization and solvent assisted inlet ionization. Anal. Chem. 84, 6828–6832 (2012)

    Article  CAS  Google Scholar 

  12. Page, J.S., Tang, K., Kelly, R.T., Smith, R.D.: Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal. Chem. 80, 1800–1805 (2008)

    Article  CAS  Google Scholar 

  13. Tang, K., Page, J.S., Marginean, I., Kelly, R.T., Smith, R.D.: Improving liquid chromatography-mass spectrometry sensitivity using a subambient pressure ionization with nanoelectrospray (spin) interface. J. Am. Soc. Mass Spectrom. 22, 1318–1325 (2011)

    Article  CAS  Google Scholar 

  14. Marginean, I., Kronewitter, S.R., Moore, R.J., Slysz, G.W., Monroe, M.E., Anderson, G., Tang, K., Smith, R.D.: Improving n-glycan coverage using hplc-ms with electrospray ionization at subambient pressure. Anal. Chem. 84, 9208–9213 (2012)

    CAS  Google Scholar 

  15. Kelly, R.T., Tolmachev, A.V., Page, J.S., Tang, K., Smith, R.D.: The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 29, 294–312 (2010)

    Google Scholar 

  16. Cook, K.D.: Electrohydrodynamic mass-spectrometry. Mass Spectrom. Rev. 5, 467–519 (1986)

    Article  CAS  Google Scholar 

  17. Prewett, P.D., Mair, G.L.R.: Focused ion beams from LMIS. pp. 1–332, Research Study Press, Sommeret, UK (1991)

  18. Gamero-Castano, M., Aguirre-De-Carcer, I., de Juan, L., de la Mora, J.F.: On the current emitted by taylor cone-jets of electrolytes in vacuo: implications for liquid metal ion sources. J. Appl. Phys. 83, 2428–2434 (1998)

    Article  CAS  Google Scholar 

  19. Romero-Sanz, I., de la Mora, J.F.: Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo. J. Appl. Phys. 95, 2123–2129 (2004)

    Article  CAS  Google Scholar 

  20. Sheehan, E.W.: Method and apparatus for improved electrospray analysis. USA Patent no. 5,838,002 (1998)

  21. Sheehan, E.W., Willoughby, R.C., Jarrell, J.A., Strand, D.M.: Electrospray for chemical analysis. USA Patent no. 6,278,111 (2001)

  22. Marginean, I., Page, J.S., Tolmachev, A.V., Tang, K., Smith, R.D.: Achieving 50% ionization efficiency in subambient pressure ionization with nanoelectrospray. Anal. Chem. 82, 9344–9349 (2010)

    Article  CAS  Google Scholar 

  23. Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996)

    Article  CAS  Google Scholar 

  24. El-Faramawy, A., Siu, K.W.M., Thomson, B.A.: Efficiency of nano-electrospray ionization. J. Am. Soc. Mass Spectrom. 16, 1702–1707 (2005)

    Article  CAS  Google Scholar 

  25. Kelly, R.T., Page, J.S., Zhao, R., Qian, W.-J., Mottaz, H.M., Tang, K., Smith, R.D.: Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal. Chem. 80, 143–149 (2008)

    Article  CAS  Google Scholar 

  26. Mao, P., Wang, H.-T., Yang, P., Wang, D.: Multinozzle emitter arrays for nanoelectrospray mass spectrometry. Anal. Chem. 83, 6082–6089 (2011)

    Article  CAS  Google Scholar 

  27. Gibson, G.T.T., Mugo, S.M., Oleschuk, R.D.: Nanoelectrospray emitters: trends and perspective. Mass Spectrom. Rev. 28, 918–936 (2009)

    Article  CAS  Google Scholar 

  28. Tang, K., Lin, Y.H., Matson, D.W., Kim, T., Smith, R.D.: Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Anal. Chem. 73, 1658–1663 (2001)

    Article  CAS  Google Scholar 

  29. Gibson, G.T.T., Wright, R.D., Oleschuk, R.D.: Multiple electrosprays generated from a single polycarbonate microstructured fibre. J. Mass Spectrom. 47, 271–276 (2012)

    Article  CAS  Google Scholar 

  30. Kelly, R.T., Page, J.S., Tang, K., Smith, R.D.: Array of chemically etched fused-silica emitters for improving the sensitivity and quantitation of electrospray ionization mass spectrometry. Anal. Chem. 79, 4192–4198 (2007)

    Article  CAS  Google Scholar 

  31. Kelly, R.T., Page, J.S., Marginean, I., Tang, K., Smith, R.D.: Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Anal. Chem. 80, 5660–5665 (2008)

    Article  CAS  Google Scholar 

  32. Su, S., Gibson, G.T.T., Mugo, S.M., Marecak, D.M., Oleschuk, R.D.: Microstructured photonic fibers as multichannel electrospray emitters. Anal. Chem. 81, 7281–7287 (2009)

    Article  CAS  Google Scholar 

  33. Kim, W., Guo, M., Yang, P., Wang, D.: Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry. Anal. Chem. 79, 3703–3707 (2007)

    Article  CAS  Google Scholar 

  34. Sen, A.K., Darabi, J., Knapp, D.R.: Simulation and parametric study of a novel multi-spray emitter for esi-ms applications. Microfluid. Nanofluid. 3, 283–298 (2007)

    Article  CAS  Google Scholar 

  35. Gomez, A., Bingham, D., de Juan, L., Tang, K.: Production of protein nanoparticles by electrospray drying. J. Aerosol Sci. 29, 561–574 (1998)

    Article  CAS  Google Scholar 

  36. Romero-Sanz, I., Bocanegra, R., de la Mora, J.F., Gamero-Castano, M.: Source of heavy molecular ions based on taylor cones of ionic liquids operating in the pure ion evaporation regime. J. Appl. Phys. 94, 3599–3605 (2003)

    Article  CAS  Google Scholar 

  37. Deng, W., Gomez, A.: Influence of space charge on the scale-up of multiplexed electrosprays. J. Aerosol Sci. 38, 1062–1078 (2007)

    Article  CAS  Google Scholar 

  38. Kelly, R.T., Page, J.S., Luo, Q., Moore, R.J., Orton, D.J., Tang, K., Smith, R.D.: Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 7796–7801 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Portions of this research were supported by the National Center for Research Resources (RR18522), National Cancer Institute (1R33CA155252), National Institute of General Medical Sciences Sciences (P41 GM103493-1), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), and by the Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. All the experiments were performed in the Environmental Molecular Sciences Laboratory, a US Department of Energy (DOE) national scientific user facility located at PNNL in Richland, Washington. PNNL is a multiprogramming national laboratory operated by Battelle for the DOE under contract DE-AC05-76RLO01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqi Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure SM1

Optical image of complete emitter assembly (a). Photomicrograph of a 10-emitter array with individualized sheath gas capillaries (b) (DOCX 4427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, J.T., Marginean, I., Kelly, R.T. et al. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures. J. Am. Soc. Mass Spectrom. 25, 2028–2037 (2014). https://doi.org/10.1007/s13361-014-0856-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0856-5

Key words

Navigation