Skip to main content
Log in

Solution Dependence of the Collisional Activation of Ubiquitin [M + 7H]7+ Ions

  • Focus: Advancing High Performance Mass Spectrometry: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The solution dependence of gas-phase unfolding for ubiquitin [M + 7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dobson, C.M.: Protein folding and misfolding. Nature 426, 884–890 (2003)

    Article  CAS  Google Scholar 

  2. Brockwell, D.J., Radford, S.E.: Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17, 30–37 (2007)

    Article  CAS  Google Scholar 

  3. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008)

    Article  CAS  Google Scholar 

  4. Freddolino, P.L., Harrison, C.B., Liu, Y., Schulten, K.: Challenges in protein-folding simulations. Nat. Phys. 6, 751–758 (2010)

    Article  CAS  Google Scholar 

  5. Roder, H., Maki, K., Cheng, H.: Early events in protein folding explored by rapid mixing methods. Chem. Rev. 106, 1836–1861 (2006)

    Article  CAS  Google Scholar 

  6. Bartlett, A.I., Radford, S.E.: An expanding arsenal of experimental methods yields and explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 16, 582–588 (2009)

    Article  CAS  Google Scholar 

  7. Schuler, B., Eaton, W.A.: Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008)

    Article  CAS  Google Scholar 

  8. Korzhnev, D.M., Religa, T.L., Banachewicz, W., Fersht, A.R., Kay, L.E.: A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010)

    Article  CAS  Google Scholar 

  9. Gianni, S., Ivarsson, Y., De Simone, A., Travaglini-Allocatelli, C., Brunori, M., Vendruscolo, M.: Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain. Nat. Struct. Mol. Biol. 17, 1431–1438 (2010)

    Article  CAS  Google Scholar 

  10. Rennella, E., Cutuil, T., Schanda, P., Ayala, I., Forge, V., Brutscher, B.: Real-time NMR characterization of structure and dynamics in a transiently populated protein folding intermediate. J. Am. Chem. Soc. 134, 8066–8069 (2012)

    Article  CAS  Google Scholar 

  11. Konermann, L., Pan, J., Liu, Y.-H.: Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011)

    Article  CAS  Google Scholar 

  12. Skinner, O.S., McLafferty, F.W., Breuker, K.: How ubiquitin unfolds after transfer into the gas phase. J. Am. Soc. Mass Spectrom. 23, 1011–1014 (2012)

    Article  CAS  Google Scholar 

  13. Zhang, H., Cui, W., Gross, M.L.: Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase. Int. J. Mass Spectrom. 354/355, 288–291 (2013)

    Article  Google Scholar 

  14. Chen, J., Rempel, D.L., Gross, M.L.: Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc. 132, 15502–15504 (2010)

    Article  CAS  Google Scholar 

  15. Hoaglund-Hyzer, C.S., Counterman, A.E., Clemmer, D.E.: Anhydrous protein ions. Chem. Rev. 99, 3037–3079 (1999)

    Article  CAS  Google Scholar 

  16. Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)

    Article  CAS  Google Scholar 

  17. Lenkinski, R.E., Chen, D.M., Glickson, J.D., Goldstein, G.: Nuclear magnetic resonance studies of the denaturation of ubiquitin. Biochim. Biophys. Acta 494, 126–130 (1977)

    Article  CAS  Google Scholar 

  18. Wilkinson, K.D., Mayer, A.N.: Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys. 250, 390–399 (1986)

    Article  CAS  Google Scholar 

  19. Harding, M.M., Williams, D.H., Woolfson, D.N.: Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry 30, 3120–3128 (1991)

    Article  CAS  Google Scholar 

  20. Vijay-Kumar, S., Bugg, C.E., Cook, W.J.: Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987)

    Article  CAS  Google Scholar 

  21. Brutscher, B., Brüschweiler, R., Ernst, R.R.: Backbone dynamics and structural characterization of the partially folded a state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry 36, 13043–13053 (1997)

    Article  CAS  Google Scholar 

  22. Pan, Y., Briggs, M.S.: Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry 31, 11405–11412 (1992)

    Article  CAS  Google Scholar 

  23. Stockman, B.J., Euvrard, A., Scahill, T.A.: Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J. Biomol. 3, 285–296 (1993)

    Google Scholar 

  24. Cox, J.P.L., Evans, P.A., Packman, L.C., Williams, D.H., Woolfson, D.N.: Dissecting the structure of a partially folded protein: circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J. Mol. Biol. 234, 483–492 (1993)

    Google Scholar 

  25. Cordier, F., Grzesiek, S.: Quantitative comparison of the hydrogen bond network of A-State and native ubiquitin by hydrogen bond scalar couplings. Biochemistry 43, 11295–11301 (2004)

    Google Scholar 

  26. Kony, D.B., Hünenberger, P.H., van Gunsteren, W.F.: Molecular dynamics simulations of the native and partially folded states of ubiquitin: influence of methanol cosolvent, pH and temperature on the protein structure and dynamics. Protein Sci. 16, 1101–1118 (2007)

    Google Scholar 

  27. Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)

    Article  CAS  Google Scholar 

  28. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)

    Article  CAS  Google Scholar 

  29. Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)

    Article  CAS  Google Scholar 

  30. Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)

    Article  CAS  Google Scholar 

  31. Wyttenbach, T., Bowers, M.T.: Gas-phase conformations: the ion mobility/ion chromatography method. Top. Curr. Chem. 225, 207–232 (2003)

    Article  CAS  Google Scholar 

  32. Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)

    Article  CAS  Google Scholar 

  33. Loo, J.A., He, J.X., Cody, W.L.: Higher order structure in the gas phase reflects solution structure. J. Am. Chem. Soc. 120, 4542–4543 (1998)

    Article  CAS  Google Scholar 

  34. Ruotolo, B.T., Giles, K., Campuzano, I., Sandercock, A.M., Bateman, R.H., Robinson, C.V.: Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005)

    Article  CAS  Google Scholar 

  35. Ruotolo, B.T., Robinson, C.V.: Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 10, 402–408 (2006)

    Article  CAS  Google Scholar 

  36. Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.-E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of alzheimer’s disease. Nat. Chem. 1, 326–331 (2009)

    Google Scholar 

  37. Wyttenbach, T., Bowers, M.T.: Structural Stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J. Phys. Chem. B 115, 12266–12275 (2011)

    Google Scholar 

  38. Shi, H., Gu, L., Clemmer, D.E., Robinson, R.A.S.: Effects of Fe(II)/H2O2 oxidation on ubiquitin conformers measured by ion mobility-mass spectrometry. J. Phys. Chem. B 117, 164–173 (2013)

    Article  CAS  Google Scholar 

  39. Shi, H., Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Conformation types of ubiquitin [M + 8H]8+ ions from water:methanol solutions: evidence for the N and A states in aqueous solution. J. Phys. Chem. B 116, 3344–3352 (2012)

    Article  CAS  Google Scholar 

  40. Valentine, S.J., Counterman, A.E., Clemmer, D.E.: Conformer-dependent proton-transfer reactions of ubiquitin ions. J. Am. Soc. Mass Spectrom. 8, 954–961 (1997)

    Article  CAS  Google Scholar 

  41. Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein Structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119, 2240–2248 (1997)

    Article  CAS  Google Scholar 

  42. Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)

    Article  CAS  Google Scholar 

  43. Shi, H., Clemmer, D.E.: Evidence for two new solution states of ubiquitin by IMS-MS analysis. Submitted

  44. Li, J., Taraszka, J.A., Counterman, A.E., Clemmer, D.E.: Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int. J. Mass Spectrom. 185/186/187, 37–47 (1999)

    Article  CAS  Google Scholar 

  45. Badman, E.R., Hoaglund-Hyzer, C.S., Clemmer, D.E.: Dissociation of different conformations of ubiquitin ions. J. Am. Soc. Mass Spectrom. 13, 719–723 (2002)

    Google Scholar 

  46. Myung, S., Badman, E.R., Lee, Y.J., Clemmer, D.E.: Structural transitions of electrosprayed ubiquitin ions stored in an ion trap over ~10 ms to 30 s. J. Phys. Chem. A 106, 9976–9982 (2002)

    Article  CAS  Google Scholar 

  47. Koeniger, S.L., Merenbloom, S.I., Clemmer, D.E.: Evidence for many resolvable structures within conformation types of electrosprayed ubiquitin ions. J. Phys. Chem. B 110, 7017–7021 (2006)

    Google Scholar 

  48. Koeniger, S.L., Merenbloom, S.I., Sevugarajan, S., Clemmer, D.E.: Transfer of structural elements from compact to extended states in unsolvated ubiquitin. J. Am. Chem. Soc. 128, 11713–11719 (2006)

    Article  CAS  Google Scholar 

  49. Koeniger, S.L., Clemmer, D.E.: Resolution and structural transitions of elongated states of ubiquitin. J. Am. Soc. Mass Spectrom. 18, 322–331 (2007)

    Article  CAS  Google Scholar 

  50. Lee, S., Ewing, M.A., Nachtigall, F.M., Kurulugama, R.T., Valentine, S.J., Clemmer, D.E.: Determination of cross sections by overtone mobility spectrometry: evidence for loss of unstable structures at higher overtones. J. Phys. Chem. B 114, 12406–12415 (2010)

    Google Scholar 

  51. Bohrer, B.C., Atlasevich, N., Clemmer, D.E.: Transitions between elongated conformations of ubiquitin [M+11H]11+ enhance hydrogen/deuterium exchange. J. Phys. Chem. B 115, 4509–4515 (2011)

    Google Scholar 

  52. Mack, E.: Average cross-sectional areas of molecules by gaseous diffusion methods. J. Am. Chem. Soc. 47, 2468–2482 (1925)

    Article  CAS  Google Scholar 

  53. Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis—a review. Anal. Chem. 47, 970–983 (1975)

    Article  CAS  Google Scholar 

  54. Mason, E.A., McDaniel, E.W.: Transport properties of ions in gases. Wiley, New York (1988)

    Book  Google Scholar 

  55. Merenbloom, S.I., Koeniger, S.L., Valentine, S.J., Plasencia, M.D., Clemmer, D.E.: IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Anal. Chem. 78, 2802–2809 (2006)

    Article  CAS  Google Scholar 

  56. Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H., Smith, R.D., Clemmer, D.E.: An IMS-IMS analogue of MS-MS. Anal. Chem. 78, 4161–4174 (2006)

    Article  CAS  Google Scholar 

  57. Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)

    Article  CAS  Google Scholar 

  58. Mohimen, A., Dobo, A., Hoerner, J.K., Kaltashov, I.A.: A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal. Chem. 75, 4139–4147 (2003)

    Article  CAS  Google Scholar 

  59. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  60. Breuker, K., Oh, H.B., Horn, D.M., Cerda, B.A., McLafferty, F.W.: Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124, 6407–6420 (2002)

    Article  CAS  Google Scholar 

  61. Robinson, E.: The role of conformation on electron capture dissociation of ubiquitin. J. Am. Soc. Mass Spectrom. 2006(17), 1469–1479 (2006)

  62. Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)

    Article  CAS  Google Scholar 

  63. Lee, S., Li, Z., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: a new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)

    CAS  Google Scholar 

  64. Papadopoulos, G., Svendsen, A., Boyarkin, O.V., Rizzo, T.R.: Conformational distribution of bradykinin [bk + 2H]2+ revealed by cold ion spectroscopy coupled with FAIMS. J. Am. Soc. Mass Spectrom. 23, 1173–1181 (2012)

    Article  CAS  Google Scholar 

  65. Nagornova, N.S., Rizzo, T.R., Boyarkin, O.V.: Exploring the mechanism of IR-UV double-resonance for quantitative spectroscopy of protonated polypeptides and proteins. Angew. Chem., Int. Ed. 52, 6002–6005 (2013)

    Article  CAS  Google Scholar 

  66. Breuker, K., Brüschweiler, S., Tollinger, M.: Electrostatic stabilization of a native protein structure in the gas phase. Angew. Chem., Int. Ed. 50, 873–877 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge partial funding of this work from grants that support instrumentation development. These include grants from the NIH (1RC1GM090797-02) and funds from the Indiana University METACyt initiative that is funded by a grant from the Lilly Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Atlasevich, N., Merenbloom, S.I. et al. Solution Dependence of the Collisional Activation of Ubiquitin [M + 7H]7+ Ions. J. Am. Soc. Mass Spectrom. 25, 2000–2008 (2014). https://doi.org/10.1007/s13361-014-0834-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0834-y

Key words

Navigation