Skip to main content
Log in

Structural Characterization of Actinomycin D Using Multiple Ion Isolation and Electron Induced Dissociation

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Non-ribosomal peptides are bio synthesized using a range of enzymes that allow much more structural variability compared with “normal” peptides. Deviations from the standard amino acid structures are common features of this diverse class of natural products, making sequencing a challenging process. FTICR mass spectrometry, specifically the complementary tandem mass spectrometry techniques collision activated dissociation (CAD) and electron induced dissociation (EID), have been used to reveal structural information on the non-ribosomal peptide actinomycin D. EID was also combined with a multiple ion isolation method in order to provide an accurate (sub-ppm) internal calibration for the product ions. EID has been found to produce more detailed, complementary data than CAD for actinomycin D, with additional information being provided through fragmentation of the sodium and lithium adducts. Furthermore, the use of isolation in the FTICR cell was found to increase product ion intensities relative to the precursor ion, enabling significantly more peaks to be detected than when using EID alone. The combination of multiple ion isolation with EID, therefore, enables an accurate internal calibration of the fragment ions to be made (average mass uncertainty of <0.3 ppm), as well as increasing the degree of fragmentation of the compound, resulting in detailed structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marahiel, M.A.: Protein templates for the biosynthesis of peptide antibiotics. Chem. Biol. 4, 561–567 (1997)

    Article  CAS  Google Scholar 

  2. Fischbach, M.A., Walsh, C.T.: Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006)

    Article  CAS  Google Scholar 

  3. Schwarzer, D., Finking, R., Marahiel, M.A.: Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003)

    Article  CAS  Google Scholar 

  4. Strieker, M., Tanovic, A., Marahiel, M.A.: Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 20, 234–240 (2010)

    Article  CAS  Google Scholar 

  5. Felnagle, E.A., Jackson, E.E., Chan, Y.A., Podevels, A.M., Berti, A.D., McMahon, M.D., Thomas, M.G.: Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008)

    Article  CAS  Google Scholar 

  6. Konz, D., Marahiel, M.A.: How do peptide synthetases generate structural diversity? Chem. Biol. 6, R39–R48 (1999)

    Article  CAS  Google Scholar 

  7. Shin, Y.G., van Breemen, R.B.: Analysis and screening of combinatorial libraries using mass spectrometry. Biopharm. Drug Dispos. 22, 353–372 (2001)

    Article  CAS  Google Scholar 

  8. Feng, X., Siegel, M.M.: FTICR-MS applications for the structure determination of natural products. Anal. Bioanal. Chem. 389, 1341–1363 (2007)

    Article  CAS  Google Scholar 

  9. Konishi, Y., Kiyota, T., Draghici, C., Gao, J.-M., Yeboah, F., Acoca, S., Jarussophon, S., Purisima, E.: Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Anal. Chem. 79, 1187–1197 (2006)

    Article  Google Scholar 

  10. Jennings, K.R.: Collision-induced decompositions of aromatic molecular ions. Int. J. Mass Spectrom. Ion Phys. 1, 227–235 (1968)

    Article  CAS  Google Scholar 

  11. Senko, M.W., Speir, J.P., McLafferty, F.W.: Collisional activation of large multiply charged ions using fourier transform mass spectrometry. Anal. Chem. 66, 2801–2808 (1994)

    Article  CAS  Google Scholar 

  12. Bumpus, S.B., Evans, B.S., Thomas, P.M., Ntai, I., Kelleher, N.L.: A proteomics approach to discovering natural products and their biosynthetic pathways. Nat. Biotechnol. 27, 951–956 (2009)

    Article  CAS  Google Scholar 

  13. Bandeira, N., Ng, J., Meluzzi, D., Linington, R., Dorrestein, P., Pevzner, P.: De novo sequencing of nonribosomal peptides. In: Vingron, M., Wong, L. (eds.) Research in Computational Molecular Biology, pp. 181–195. Springer, Berlin Heidelberg (2008)

    Chapter  Google Scholar 

  14. Eckart, K., Schwarz, H., Tomer, K.B., Gross, M.L.: Tandem mass spectrometry methodology for the sequence determination of cyclic peptides. J. Am. Chem. Soc. 107, 6765–6769 (1985)

    Article  CAS  Google Scholar 

  15. Ngoka, L.C.M., Gross, M.L.: Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer. J. Am. Soc. Mass Spectrom. 10, 732–746 (1999)

    Article  CAS  Google Scholar 

  16. Barber, M., Bell, D.J., Morris, M.R., Tetler, L.W., Monaghan, J.J., Morden, W.E., Bycroft, B.W., Green, B.N.: An investigation of the tyrothricin complex by tandem mass spectrometry. Int. J. Mass Spectrom. Ion Processes 122, 143–151 (1992)

    Article  CAS  Google Scholar 

  17. Leymarie, N., Costello, C.E., O'Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 8949–8958 (2003)

    Article  CAS  Google Scholar 

  18. Little, D.P., Speir, J.P., Senko, M.W., O'Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994)

    Article  CAS  Google Scholar 

  19. Mosely, J.A., Smith, M.J.P., Prakash, A.S., Sims, M., Bristow, A.W.T.: Electron-induced dissociation of singly charged organic cations as a tool for structural characterization of pharmaceutical type molecules. Anal. Chem. 83, 4068–4075 (2011)

    Article  CAS  Google Scholar 

  20. Lioe, H., O'Hair, R.A.J.: Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap-FT-ICR mass spectrometer. Anal. Bioanal. Chem. 389, 1429–1437 (2007)

    Article  CAS  Google Scholar 

  21. Feketeova, L., O'Hair, R.A.J.: Electron-induced dissociation of doubly protonated betaine clusters: controlling fragmentation chemistry through electron energy. Rapid Commun. Mass Spectrom. 23, 3259–3263 (2009)

    Article  CAS  Google Scholar 

  22. Feketeova, L., O'Hair, R.A.J.: Comparison of collision versus electron-induced dissociation of sodium chloride cluster cations. Rapid Commun. Mass Spectrom. 23, 60–64 (2009)

    Article  CAS  Google Scholar 

  23. Wang, T.C.L., Ricca, T.L., Marshall, A.G.: Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation. Anal. Chem. 58, 2935–2938 (1986)

    Article  CAS  Google Scholar 

  24. de Koning, L.J., Nibbering, N.M.M., van Orden, S.L., Laukien, F.H.: Mass selection of ions in a Fourier transform ion cyclotron resonance trap using correlated harmonic excitation fields (CHEF). Int. J. Mass Spectrom. Ion Processes 165/166, 209–219 (1997)

    Article  Google Scholar 

  25. O'Connor, P.B., McLafferty, F.W.: High-resolution ion isolation with the ion cyclotron resonance capacitively coupled open cell. J. Am. Soc. Mass Spectrom. 6, 533–535 (1995)

    Article  Google Scholar 

  26. Heck, A.J.R., Derrick, P.J.: Ultrahigh mass accuracy in isotope-selective collision-induced dissociation using correlated sweep excitation and sustained off-resonance irradiation: A Fourier transform ion cyclotron resonance mass spectrometry case study on the [M + 2H]2+ ion of bradykinin. Anal. Chem. 69, 3603–3607 (1997)

    Article  CAS  Google Scholar 

  27. Wu, Q.: Multistage accurate mass spectrometry: a “Basket in a Basket” approach for structure elucidation and its application to a compound from combinatorial synthesis. Anal. Chem. 70, 865–872 (1998)

    Article  CAS  Google Scholar 

  28. Kruppa, G., Schnier, P.D., Tabei, K., Van Orden, S., Siegel, M.M.: Multiple ion isolation applications in FT-ICR MS: exact-mass MSn internal calibration and purification/interrogation of protein−drug complexes. Anal. Chem. 74, 3877–3886 (2002)

    Article  CAS  Google Scholar 

  29. McDonald, L.A., Barbieri, L.R., Carter, G.T., Kruppa, G., Feng, X.D., Lotvin, J.A., Siegel, M.M.: FTMS structure elucidation of natural products: application to muraymycin antibiotics using ESI multi-CHEF SORI-CID FTMSn, the top-down/bottom-up approach, and HPLC ESI capillary-skimmer CID FTMS. Anal. Chem. 75, 2730–2739 (2003)

    Article  CAS  Google Scholar 

  30. Gauthier, J.W., Trautman, T.R., Jacobson, D.B.: Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 246, 211–225 (1991)

    Article  CAS  Google Scholar 

  31. Wills, R.H., Tosin, M., O'Connor, P.B.: Structural characterization of polyketides using high mass accuracy tandem mass spectrometry. Anal. Chem. 84, 8863–8870 (2012)

    Article  CAS  Google Scholar 

  32. Caravatti, P., Allemann, M.: The infinity cell—a new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier-transform ion-cyclotron resonance mass-spectrometry. Org. Mass Spectrom. 26, 514–518 (1991)

    Article  CAS  Google Scholar 

  33. Barber, M., Bell, D., Morris, M., Tetler, L., Woods, M., Bycroft, B.W., Monaghan, J.J., Morden, W.E., Green, B.N.: Study of an actinomycin complex by mass-spectrometry mass-spectrometry. Talanta 35, 605–611 (1988)

    Article  CAS  Google Scholar 

  34. Ngoka, L.C.M., Gross, M.L., Toogood, P.L.: Sodium-directed selective cleavage of lactones: a method for structure determination of cyclodepsipeptides. Int. J. Mass Spectrom. 1999(182/183), 289–298 (1999)

    Article  Google Scholar 

  35. Feketeova, L., Wong, M.W., O'Hair, R.A.J.: The role of metal cation in electron-induced dissociation of tryptophan. Eur. Phys. J. D 60, 11–20 (2010)

    Article  CAS  Google Scholar 

  36. Wolff, J.J., Laremore, T.N., Aslam, H., Linhardt, R.J., Amster, I.J.: Electron-induced dissociation of glycosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 19, 1449–1458 (2008)

    Article  CAS  Google Scholar 

  37. Yoo, H.J., Hakansson, K.: Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation. Anal. Chem. 82, 6940–6946 (2010)

    Article  CAS  Google Scholar 

  38. McFarland, M.A., Chalmers, M.J., Quinn, J.P., Hendrickson, C.L., Marshall, A.G.: Evaluation and optimization of electron capture dissociation efficiency in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2005(16), 1060–1066 (2005)

    Article  Google Scholar 

  39. Gorshkov, M.V., Masselon, C.D., Nikolaev, E.N., Udseth, H.R., Pasa-Tolic, L., Smith, R.D.: Considerations for electron capture dissociation efficiency in FTICR mass spectrometry. Int. J. Mass Spectrom. 234, 131–136 (2004)

    Article  CAS  Google Scholar 

  40. Hendrickson, C.L., Hadjarab, F., Laude Jr., D.A.: Electron beam potential depression as an ion trap in Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. Ion Processes 141, 161–170 (1995)

    Article  CAS  Google Scholar 

  41. Li, H., Lin, T.-Y., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., Sadler, P.J., O’Connor, P.B.: Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs. Anal. Chem. 83, 9507–9515 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DTA (EPSRC) for R.W. Financial support from the NIH (grant NIH/NIGMS-R01GM078293), and the Warwick Centre for Analytical Science (EPSRC funded grant EP/F034210/1) is greatly appreciated. Also thanks go to Dr. Mark Barrow, Andrea Lopez-Clavijo, Pilar Perez-Hurtado, and Yulin Qi for help with instrumentation and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. O’Connor.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wills, R.H., O’Connor, P.B. Structural Characterization of Actinomycin D Using Multiple Ion Isolation and Electron Induced Dissociation. J. Am. Soc. Mass Spectrom. 25, 186–195 (2014). https://doi.org/10.1007/s13361-013-0774-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0774-y

Key words

Navigation