Skip to main content
Log in

Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these “normal” mass spectrometry conditions, the radial (r) and axial (z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a “tickle voltage” is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stafford Jr., G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E., Todd, J.F.J.: Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass Spectrom. Ion Proceses. 60, 85–98 (1984)

    Article  CAS  Google Scholar 

  2. Wang, Y., Franzen, J.: The Nonlinear ion-trap. 3. Multipole components in 3 types of practical ion-trap. Int. J. Mass Spectrom. Ion Processes 132, 155–172 (1994)

    Article  CAS  Google Scholar 

  3. Louris, J., Schwartz, J., Stafford Jr., G.C., Syka, J.E.P., Taylor, D.: The Paul ion trap mass selective instability scan: Trap geometry and resolution. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, p. 1003 (1992)

  4. Wells, J.M., Plass, W.R., Patterson, G.E., Zheng, O.Y., Badman, E.R., Cooks, R.G.: Chemical mass shifts in ion trap mass spectrometry: Experiments and simulations. Anal. Chem. 71, 3405–3415 (1999)

    Article  CAS  Google Scholar 

  5. Plass, W.R., Li, H.Y., Cooks, R.G.: Theory, simulation, and measurement of chemical mass shifts in rf quadrupole ion traps. Int. J. Mass Spectrom. 228, 237–267 (2003)

    Article  CAS  Google Scholar 

  6. Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps. Rapid Commun. Mass Spectrom. 14, 1907–1913 (2000)

    Article  CAS  Google Scholar 

  7. Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Modeling the ion density distribution in collisional cooling rf multipole ion guides. Int. J. Mass Spectrom. 222, 155–174 (2003)

    Article  CAS  Google Scholar 

  8. March, R.E., Todd, J.F.J.: Quadrupole ion trap mass spectrometry. J. Wiley, Hoboken (2005)

    Book  Google Scholar 

  9. Tolmachev, A.V., Harkewicz, R., Alving, K., Masselon, C., Anderson, G., Rakov, V., Pasa-Tolic, L., Nikolaev, E., Belov, M., Udseth, H.R., Smith, R.D.: Radial stratification of ions as a function of m/z ratio in collisional cooling rf multipoles used as ion guides or ion traps. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics, Long Beach, p. 115 (2000)

  10. Dahl, D.: SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3–25 (2000)

    Article  CAS  Google Scholar 

  11. Wu, G., Cooks, R.G., Ouyang, Z., Yu, M., Chappell, W.J., Plass, W.R.: Ion trajectory simulation for electrode configurations with arbitrary geometries. J. Am. Soc. Mass Spectrom. 17, 1216–1228 (2006)

    Article  CAS  Google Scholar 

  12. Plass, W.R., Cooks, R.G.: A model for energy transfer in inelastic molecular collisions applicable at steady state or non-steady state and for an arbitrary distribution of collision energies. J. Am. Soc. Mass Spectrom. 14, 1348–1359 (2003)

    Article  CAS  Google Scholar 

  13. Vedel, F., Andre, J.: Influence of space-charge on the computed statistical properties of stored ions cooled by a buffer gas in a quadrupole rf trap. Phys. Rev. 29, 2098–2101 (1984)

    Article  CAS  Google Scholar 

  14. Siemers, I., Blatt, R., Sauter, T., Neuhauser, W.: Dynamics of ion clouds in Paul traps. Phys. Rev. 38, 5121–5128 (1988)

    Article  CAS  Google Scholar 

  15. Guan, S., Marshall, A.: Equilibrium space-charge distribution in a quadrupole ion-trap. J. Am. Soc. Mass Spectrom. 5, 64–71 (1994)

    Article  CAS  Google Scholar 

  16. Xiong, X., Xu, W., Fang, X., Deng, Y., Ouyang, Z.: Accelerated simulation study of space charge effects in quadrupole ion traps using GPU techniques. J. Am. Soc. Mass Spectrom. 23, 1799–1807 (2012)

    Article  CAS  Google Scholar 

  17. Vladimirov, G., Hendrickson, C.L., Blakney, G.T., Marshall, A.G., Heeren, R.M.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion. J. Am. Soc. Mass Spectrom. 23, 375–384 (2012)

    Article  CAS  Google Scholar 

  18. Hemberger, P.H., Nogar, N.S., Williams, J.D., Cooks, R.G., Syka, J.E.P.: Laser photodissociation probe for ion tomography studies in a quadrupole ion-trap mass-spectrometer. Chem. Phys. Lett. 191, 405–410 (1992)

    Article  CAS  Google Scholar 

  19. Cleven, C.D., Cooks, R.G., Garrett, A.W., Nogar, N.S., Hemberger, P.H.: Radial distributions and ejection times of molecular ions in an ion trap mass spectrometer: A laser tomography study of effects of ion density and molecular type. J. Phys. Chem. 100, 40–46 (1996)

    Article  CAS  Google Scholar 

  20. Remes, P.M., Glish, G.L.: Mapping the distribution of ion positions as a function of quadrupole ion trap mass spectrometer operating parameters to optimize infrared multiphoton dissociation. J. Phys. Chem. A 113, 3447–3454 (2009)

    Article  CAS  Google Scholar 

  21. Wuerker, R.F., Shelton, H., Langmuir, R.V.: Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342–349 (1959)

    Article  Google Scholar 

  22. Neuhauser, W., Hohenstatt, M., Toschek, P.E., Dehmelt, H.G.: Visual observation and optical cooling of electrodynamically contained ions. Appl. Phys. 17, 123–129 (1978)

    Article  CAS  Google Scholar 

  23. Knight, R.D., Prior, M.H.: Laser scanning measurement of the density distribution of confined 6Li+ ions. J. Appl. Phys. 50, 3044–3049 (1979)

    Article  CAS  Google Scholar 

  24. Schaaf, H., Schmeling, U., Werth, G.: Trapped ion density distribution in the presence of He-buffer gas. Appl. Phys. 25, 249–251 (1981)

    Article  CAS  Google Scholar 

  25. Rosenband, T., Hume, D.B., Schmidt, P.O., Chou, C.W., Brusch, A., Lorini, L., Oskay, W.H., Drullinger, R.E., Fortier, T.M., Stalnaker, J.E., Diddams, S.A., Swann, W.C., Newbury, N.R., Itano, W.M., Wineland, D.J., Bergquist, J.C.: Frequency ratio of Al+ and Hg+ Single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  CAS  Google Scholar 

  26. Wieman, C.E., Pritchard, D.E., Wineland, D.J.: Atom cooling, trapping, and quantum manipulation. Rev. Mod. Phys. 71, S253–S262 (1999)

    Article  CAS  Google Scholar 

  27. Blatt, R., Gill, P., Thompson, R.C.: Current perspectives on the physics of trapped ions. J. Mod. Opt. 39, 193–220 (1992)

    Article  CAS  Google Scholar 

  28. Willitsch, S.: Coulomb-crystallized molecular ions in traps: Methods, applications. Prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012)

    Article  CAS  Google Scholar 

  29. Bian, Q., Forbes, M.W., Talbot, F.O., Jockusch, R.A.: Gas-phase fluorescence excitation and emission spectroscopy of mass-selected trapped molecular ions. Phys. Chem. Chem. Phys. 12, 2590–2598 (2010)

    Article  CAS  Google Scholar 

  30. Forbes, M.W., Talbot, F.O., Jockusch, R.A.: The Spectroscopy of Ions Stored in Trapping Mass Spectrometers. In: March, R.E., Todd J.F.J. (eds.) Practical Aspects of Trapped Ion Mass Spectrometry vol. 5: Applications of Ion Trapping Devices. CRC Press, pp. 239–290 (2009)

  31. Collision Model HS1. Available at: http://simion.com/info/collision_model_hs1.html, accessed July 2007

  32. Forbes, M.W., Jockusch, R.A.: Gas-phase fluorescence excitation and emission spectroscopy of three xanthene dyes (rhodamine 575, rhodamine 590 and rhodamine 6G) in a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 22, 93–109 (2011)

    Google Scholar 

  33. Dehmelt, H.G.: Advances in atomic and molecular physics. Academic Press, New York (1967)

    Google Scholar 

  34. Kordel, M., Schooss, D., Neiss, C., Walter, L., Kappes, M.M.: Laser-induced fluorescence of rhodamine 6G cations in the gas phase: A lower bound to the lifetime of the first triplet state. J. Phys. Chem. A 114, 5509–5514 (2010)

    Article  CAS  Google Scholar 

  35. Hornekaer, L., Kjaergaard, N., Thommesen, A.M., Drewsen, M.: Structural properties of two-component coulomb crystals in linear Paul traps. Phys. Rev. Lett. 86, 1994–1997 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program, the Canadian Foundation for Innovation, and the Government of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Jockusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 816 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, F.O., Sciuto, S.V. & Jockusch, R.A. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 24, 1823–1832 (2013). https://doi.org/10.1007/s13361-013-0742-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0742-6

Key words

Navigation