Skip to main content
Log in

Nucleophilic Addition of Nitrogen to Aryl Cations: Mimicking Titan Chemistry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 102 Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The –OH and –NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ertl, G.: Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1, 1247–1253 (1983)

    Article  CAS  Google Scholar 

  2. Yandulov, D.V., Schrock, R.R.: Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003)

    Article  CAS  Google Scholar 

  3. Arashiba, K., Miyake, Y., Nishibayashi, Y.: A molybdenum complex bearing pnp-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011)

    Article  CAS  Google Scholar 

  4. Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 38, 105–115 (2008)

    Article  CAS  Google Scholar 

  5. Trainer, M.G., Pavlov, A.A., DeWitt, H.L., Jimenez, J.L., McKay, C.P., Toon, O.B., Tolbert, M.A.: Organic haze on Titan and the early earth. Proc. Natl. Acad. Sci. U. S. A. 103, 18035–18042 (2006)

    Article  CAS  Google Scholar 

  6. Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R.D., Fekete, A., Kanawati, B., Harir, M., Gebefuegi, I., Eckel, G., Hertkorn, N.: High molecular diversity of extraterrestrial organic matter in murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. U. S. A. 107, 2763–2768 (2010)

    Article  CAS  Google Scholar 

  7. Ehrenfreund, P., Charnley, S.B.: Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Ann. Rev. Astronomy Astrophys. 38, 427–483 (2000)

    Article  CAS  Google Scholar 

  8. Cravens, T.E., Robertson, I.P., Waite, J.H., Yelle, R.V., Kasprzak, W.T., Keller, C.N., Ledvina, S.A., Niemann, H.B., Luhmann, J.G., McNutt, R.L., Ip, W.H., De La Haye, V., Mueller-Wodarg, I., Wahlund, J.E., Anicich, V.G., Vuitton, V.: Composition of Titan's ionosphere. Geophys. Res. Lett. 33 (2006)

  9. Waite, J.H., Young, D.T., Cravens, T.E., Coates, A.J., Crary, F.J., Magee, B., Westlake, J.: The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007)

    Article  CAS  Google Scholar 

  10. Galand, M., Yelle, R.V., Coates, A.J., Backes, H., Wahlund, J.E.: Electron temperature of Titan's sunlit ionosphere. Geophys. Res. Lett. 33 (2006)

  11. Vuitton, V., Yelle, R.V., Anicich, V.G.: The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. 647, L175–L178 (2006)

    Article  CAS  Google Scholar 

  12. Trainer, M.G., Sebree, J.A., Yoon, Y.H., Tolbert, M.A.: The influence of benzene as a trace reactant in Titan aerosol analogs. Astrophys. J. Lett. 766, L4 (2013)

    Article  Google Scholar 

  13. Imanaka, H., Smith, M.A.: Euv photochemical production of unsaturated hydrocarbons: implications to euv photochemistry in Titan and Jovian planets. J. Phys. Chem. A 113, 11187–11194 (2009)

    Article  CAS  Google Scholar 

  14. Thissen, R., Vuitton, V., Lavvas, P., Lemaire, J., Dehon, C., Dutuit, O., Smith, M.A., Turchini, S., Catone, D., Yelle, R.V., Pernot, P., Somogyi, A., Coreno, M.: Laboratory studies of molecular growth in the Titan ionosphere. J. Phys. Chem. A 113, 11211–11220 (2009)

    Article  CAS  Google Scholar 

  15. Somogyi, Á., Smith, M.A., Vuitton, V., Thissen, R., Komáromi, I.: Chemical ionization in the atmosphere? A model study on negatively charged “exotic” ions generated from Titan’s tholins by ultrahigh resolution ms and MS/MS. Int. J. Mass Spectrom 316/318, 157–163 (2012)

    Article  Google Scholar 

  16. Pernot, P., Carrasco, N., Thissen, R., Schmitz-Afonso, I.: Tholinomics-chemical analysis of nitrogen-rich polymers. Anal. Chem. 82, 1371–1380 (2010)

    Article  CAS  Google Scholar 

  17. Imanaka, H., Cruikshank, D.P., Khare, B.N., McKay, C.P.: Optical constants of Titan tholins at mid-infrared wavelengths (2.5–25 mu m) and the possible chemical nature of Titan’s haze particles. Icarus 218, 247–261 (2012)

    Article  CAS  Google Scholar 

  18. Thompson, W.R., Mcdonald, G.D., Sagan, C.: The Titan haze revisited: magnetospheric energy sources and quantitative tholin yields. Icarus 112, 376–381 (1994)

    Article  CAS  Google Scholar 

  19. Ramirez, S.I., Navarro-Gonzalez, R., Coll, P., Raulin, F.: Possible contribution of different energy sources to the production of organics in Titan’s atmosphere. Adv. Space Res. 27, 261–270 (2001)

    Article  CAS  Google Scholar 

  20. Penz, T., Lammer, H., Kulikov, Y.N., Biernat, H.K.: The influence of the solar particle and radiation environment on Titan’s atmosphere evolution. Adv. Space Res. 36, 241–250 (2005)

    Article  CAS  Google Scholar 

  21. Cable, M.L., Horst, S.M., Hodyss, R., Beauchamp, P.M., Smith, M.A., Willis, P.A.: Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. Chem. Rev. 112, 1882–1909 (2012)

    Article  CAS  Google Scholar 

  22. Shilov, A.E., Shteinman, A.A., Tjabin, M.B.: Reaction of carbenes with molecular nitrogen. Tetrahedron Lett. 9, 4177–4180 (1968)

    Article  Google Scholar 

  23. Bergstrom, R.G., Landells, R.G.M., Wahl, G.H., Zollinger, H.: Dediazoniation of arenediazonium ions in homogeneous solution. 7. Intermediacy of the phenyl cation. J. Am. Chem. Soc. 98, 3301–3305 (1976)

    Article  CAS  Google Scholar 

  24. Guella, G., Ascenzi, D., Franceschi, P., Tosi, P.: Gas-phase synthesis and detection of the benzenediazonium ion, c6h5n2+. A joint atmospheric pressure chemical ionization and guided ion beam experiment. Rapid Commun. J. Am. Chem. Soc.Mass Spectrom. 19, 1951–1955 (2005)

    Google Scholar 

  25. Trainer, M.G., Jimenez, J.L., Yung, Y.L., Toon, O.B., Tolbert, M.A.: Nitrogen incorporation in ch(4)-n(2) photochemical aerosol produced by far ultraviolet irradiation. Astrobiology 12, 315–326 (2012)

    Article  CAS  Google Scholar 

  26. Aschi, M., Harvey, J.N.: Spin isomerisation of para-substituted phenyl cations. J. Chem. Soc., Perkin Trans. 2, 1059–1062 (1999)

    Google Scholar 

  27. Lazzaroni, S., Dondi, D., Fagnoni, M., Albini, A.: Geometry and energy of substituted phenyl cations. J. Org. Chem. 73, 206–211 (2008)

    Article  CAS  Google Scholar 

  28. Wang, J., Kubicki, J., Peng, H., Platz, M.S.: Influence of solvent on carbene intersystem crossing rates. J. Am. Chem. Soc. 130, 6604–6609 (2008)

    Article  CAS  Google Scholar 

  29. Galue, H.A., Oomens, J.: Spectroscopic evidence for a triplet ground state in the naphthyl cation. Angew. Chem., Int. Ed. 50, 7004–7007 (2011)

    Article  Google Scholar 

  30. Vuitton, V., Yelle, R.V., Cui, J.: Formation and distribution of benzene on Titan. J. Geophys. Res.: Planets 113, E05007 (2008)

    Article  Google Scholar 

  31. López-Puertas, M., Dinelli, B.M., Adriani, A., Funke, B., García-Comas, M., Moriconi, M.L., D’Aversa, E., Boersma, C., Allamandola, L.J.: Large abundances of polycyclic aromatic hydrocarbons in Titan’s upper atmosphere. Astrophys. J. 770, 132 (2013)

    Article  Google Scholar 

  32. Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N.: Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168, 344–366 (2004)

    Article  CAS  Google Scholar 

  33. Trainer, M.G., Pavlov, A.A., Jimenez, J.L., McKay, C.P., Worsnop, D.R., Toon, O.B., Tolbert, M.A.: Chemical composition of Titan’s haze: are PAHs present? Geophys. Res. Lett. 31, L17S08 (2004)

    Article  Google Scholar 

  34. Allamandola, L.J., Hudgins, D.M., Sandford, S.A.: Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Astrophys. J. 511, L115–L119 (1999)

    Article  CAS  Google Scholar 

  35. Cami, J.: Analyzing astronomical observations with the nasa ames pah database. EAS Publications Series 46, 117–122 (2011)

    Article  CAS  Google Scholar 

  36. Wing, M.R., Bada, J.L.: The origin of the polycyclic aromatic hydrocarbons in meteorites. Orig. Life Evol. Biosph. 21, 375–383 (1992)

    Article  Google Scholar 

  37. Snow, T.P., Le Page, V., Keheyan, Y., Bierbaum, V.M.: The interstellar chemistry of PAH cations. Nature 391, 259–260 (1998)

    Article  CAS  Google Scholar 

  38. Le Page, V., Keheyan, Y., Snow, T.P., Bierbaum, V.M.: Gas phase chemistry of pyrene and related cations with molecules and atoms of interstellar interest. Int. J. Mass Spectrom. 185, 949–959 (1999)

    Google Scholar 

  39. Betts, N.B., Stepanovic, M., Snow, T.P., Bierbaum, V.M.: Gas-phase study of coronene cation reactivity of interstellar relevance. Astrophys. J. 651, L129–L131 (2006)

    Article  CAS  Google Scholar 

  40. Vuitton, V., Yelle, R.V., McEwan, M.J.: Ion chemistry and n-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007)

    Article  Google Scholar 

  41. Anicich, V.G., Wilson, P.F., McEwan, M.J.: An ICR study of ion–molecule reactions relevant to Titan’s atmosphere: an investigation of binary hydrocarbon mixtures up to 1 micron. J. Am. Soc. Mass Spectrom. 17, 544–561 (2006)

    Article  CAS  Google Scholar 

  42. Jjunju, F.P.M., Badu-Tawiah, A.K., Li, A., Soparawalla, S., Roqan, I.S., Cooks, R.G.: Hydrocarbon analysis using desorption atmospheric pressure chemical ionization. Int. J. Mass Spectrom 345/347, 80–88 (2013)

    Article  Google Scholar 

  43. Yelle, R.V., Strobel, D.F., Lellouch, E., Gautier, D.: Engineering models for Titan’s atmosphere. In: Lebreton, J.-P. (ed.) Huygens: Science, Payload, and Mission, vol. SP-1177, pp. 243–256. European Space Agency, Noordwijk, The Netherlands (1997)

    Google Scholar 

  44. Rages, K., Pollack, J.B.: Vertical distribution of scattering hazes in Titan’s upper atmosphere. Icarus 55, 50–62 (1983)

    Article  Google Scholar 

  45. Lavvas, P., Yelle, R.V., Vuitton, V.: The detached haze layer in Titan’s mesosphere. Icarus 201, 626–633 (2009)

    Article  CAS  Google Scholar 

  46. Fiebig, L., Schmalz, H.G., Schafer, M.: Heck coupling in the gas phase: examination of the reaction mechanism by ion/molecule reactions and mass spectrometry. Int. J. Mass Spectrom. 308, 307–310 (2011)

    Article  CAS  Google Scholar 

  47. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  48. Frisch, M.J.; Gaussian, Inc.: Wallingford CT, 2004.

  49. Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy c-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007)

    Article  CAS  Google Scholar 

  50. Swain, C.G., Sheats, J.E., Gorenstein, D.G., Harbison, K.G.: Aromatic hydrogen isotope-effects in reactions of benzenediazonium salts. J. Am. Chem. Soc. 97, 791–795 (1975)

    Article  CAS  Google Scholar 

  51. Patai, S.: The Chemistry of Diazonium and Diazo Groups. J. Wiley, New York (1978)

    Book  Google Scholar 

  52. Lazzaroni, S., Dondi, D., Fagnoni, M., Albini, A.: Selectivity in the reaction of triplet phenyl cations. J. Org. Chem. 75, 315–323 (2010)

    Article  CAS  Google Scholar 

  53. Chachiyo, T., Rodriguez, J.H.: A direct method for locating minimum-energy crossing points (mecps) in spin-forbidden transitions and nonadiabatic reactions. J. Chem. Phys. 123 (2005)

  54. Vrkic, A.K., O’Hair, R.A.J.: Gas phase ion chemistry of para substituted benzene diazonium ions, their salt clusters and their related phenyl cations. Int. J. Mass Spectrom. 218, 131–160 (2002)

    Article  CAS  Google Scholar 

  55. Wulfman, D.S.: Synthetic applications of diazonium ions. In: Patai, S. (ed.) The Chemistry of Diazonium and Diazo Groups. J. Wiley, New York (1978)

    Google Scholar 

  56. Snow, T.P., Bierbaum, V.M.: Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1, 229–259 (2008)

    Google Scholar 

  57. Israel, G., Szopa, C., Raulin, F., Cabane, M., Niemann, H.B., Atreya, S.K., Bauer, S.J., Brun, J.F., Chassefiere, E., Coll, P., Conde, E., Coscia, D., Hauchecorne, A., Millian, P., Nguyen, M.J., Owen, T., Riedler, W., Samuelson, R.E., Siguier, J.M., Steller, M., Sternberg, R., Vidal-Madjar, C.: Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796–799 (2005)

    Article  CAS  Google Scholar 

  58. Coustenis, A., Encrenaz, T., Lellouch, E., Salama, A., Muller, T., Burgdorf, M.J., Schmitt, B., Feuchtgruber, H., Schulz, B., Ott, S., de Graauw, T., Griffin, M.J., Kessler, M.F.: Observations of planetary satellites with iso. Adv. Space Res. 30, 1971–1977 (2002)

    Article  CAS  Google Scholar 

  59. Brown, R.H., Kirk, R.L., Johnson, T.V., Soderblom, L.A.: Energy-sources for tritons geyser-like plumes. Science 250, 431–435 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding for this research from NASA-PIDDP (grant number NNX12AB16G)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Graham Cooks.

Additional information

Dedicated to T. Pradeep on the occasion of his 50th birthday and in recognition of his contributions to ion and materials chemistry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 599 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Jjunju, F.P.M. & Cooks, R.G. Nucleophilic Addition of Nitrogen to Aryl Cations: Mimicking Titan Chemistry. J. Am. Soc. Mass Spectrom. 24, 1745–1754 (2013). https://doi.org/10.1007/s13361-013-0710-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0710-1

Key words

Navigation