Skip to main content
Log in

Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. BBA-Gen. Subjects 1473(1), 4–8 (1999)

    Article  CAS  Google Scholar 

  2. Begley, T.P.: Wiley Encyclopedia of Chemical Biology. John Wiley and Sons, Inc.: Hoboken, NJ, vol. 2, p. 785 (2009)

  3. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2009)

    Google Scholar 

  4. Orlando, R., Lim, J.M., Atwood, J.A., Angel, P.M., Fang, M., Aoki, K., Alvarez-Manilla, G., Moremen, K.W., York, W.S., Tiemeyer, M., Pierce, M., Dalton, S., Wells, L.: IDAWG: metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J. Proteome Res. 4, 3816–3823 (2009)

    Google Scholar 

  5. Atwood, J.A., Cheng, L., Alvarez-Manilla, G., Warren, N.L., York, W.S., Orlando, R.: Quantitation by isobaric labeling: applications to glycomics. J. Proteome Res. 7, 367–374 (2008)

    Google Scholar 

  6. Xia, B.Y., Feasley, C.L., Sachdev, G.P., Smith, D.F., Cummings, R.D.: Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387(2), 162–170 (2009)

    Article  CAS  Google Scholar 

  7. Kang, P., Mechref, Y., Kyselova, Z., Goetz, J.A., Novotny, M.V.: Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal. Chem. 79, 6064–6073 (2007)

    Google Scholar 

  8. Zhang, P., Zhang, Y., Xue, X.D., Wang, C.J., Wang, Z.F., Huang, L.J.: Relative quantitation of glycans using stable isotopic labels 1-(d 0/d 5) phenyl-3-methyl-5-pyrazolone by mass spectrometry. Anal. Biochem. 418(1), 1–9 (2011)

    Article  CAS  Google Scholar 

  9. Walker, S.H., Budhathoki-Uprety, J., Novak, B.M., Muddiman, D.C.: Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of N-linked glycans by electrospray ionization mass spectrometry. Anal. Chem. 83(17), 6738–6745 (2011)

    Article  CAS  Google Scholar 

  10. Bowman, M.J., Zaia, J.: Comparative glycomics using a tetraplex stable-isotope coded tag. Anal. Chem. 82(7), 3023–3031 (2010)

    Article  CAS  Google Scholar 

  11. Alvarez-Manilla, G., Warren, N.L., Abney, T., Atwood, J., Azadi, P., York, W.S., Pierce, M., Orlando, R.: Tools for glycomics: relative quantitation of glycans by isotopic permethylation using (CH3I)-C-13. Glycobiology 17, 677–687 (2007)

    Google Scholar 

  12. Kobata, A., Amano, J.: Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapyof tumors. Immunol. Cell Biol. 3(4), 429–439 (2005)

    Article  Google Scholar 

  13. Filer, C.N.: Isotopic fractionation of organic compounds in chromatography. J. Labeled Compounds Radiopharmaceut. 42, 169–197 (1999)

    Google Scholar 

  14. Filer, C. N., Fazio, R., Ahern, D. G.: (+/−)-[methyl-H-3 and methyl-H-2]mianserin— participants in a dramatic instance of HPLC isotopic fractionation. J. Org. Chem. 46, 3344–3346 (1981)

    Google Scholar 

  15. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)

    Google Scholar 

  16. Dixon, R.B., Bereman, M.S., Petitte, J.N., Hawkridge, A.M., Muddiman, D.C.: One-year plasma N-linked glycome intra-individual and inter-individual variability in the chicken model of spontaneous ovarian adenocarcinoma. Int. J. Mass Spectrom. 305(2/3), 79–86 (2011)

    CAS  Google Scholar 

  17. de Leoz, M.L.A., Young, L.J.T., An, H.J., Kronewitter, S.R., Kim, J.H., Miyamoto, S., Borowsky, A.D., Chew, H.K., Lebrilla, C.B.: High-mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteom. 10(1), 1–9 (2011)

    Google Scholar 

  18. Snovida, S.I., Perreault, H.: A 2,5-dihydroxybenzoic acid/N, N-dimethylaniline matrix for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21(22), 3711–3715 (2007)

    Article  CAS  Google Scholar 

  19. Kaneshiro, K., Watanabe, M., Terasawa, K., Uchimura, H., Fukuyama, Y., Iwamoto, S., Sato, T.A., Shimizu, K., Tsujimoto, G., Tanaka, K.: Rapid quantitative profiling of N-glycan by the glycan-labeling method using 3-aminoquinoline/alpha-cyano-4-hydroxycinnamic acid. Anal. Chem. 84(16), 7146–7151 (2012)

    Article  CAS  Google Scholar 

  20. Walker, S.H., Taylor, A.D., Muddiman, D.C.: The use of a xylosylated plant glycoprotein as an internal standard accounting for N-linked glycan cleavage and sample preparation variability. Rapid Commun. Mass Spectrom. 27(12), 1354–1358 (2013)

    Google Scholar 

  21. Bereman, M.S., Young, D.D., Deiters, A., Muddiman, D.C.: Development of a robust and high throughput method for profiling N-linked glycans derived from plasma glycoproteins by NanoLC-FTICR mass spectrometry. J. Proteome Res. 8(7), 3764–3770 (2009)

    Article  CAS  Google Scholar 

  22. Harris, E.K.: Effects of intraindividual and interindividual variation on appropriate use of normal ranges. Clin. Chem. 20(12), 1535–1542 (1974)

    CAS  Google Scholar 

  23. Hawkridge, A.M., Muddiman, D.C.: Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Ann. Rev. Anal. Chem. 2, 265–277 (2009)

    Google Scholar 

  24. Carvalho, P.C., Fischer, J.S., Chen, E.I., Yates, J.R., Barbosa, V.C.: PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics (9), 316–329 (2008)

  25. Dong, M.Q., Venable, J.D., Au, N., Xu, T., Park, S.K., Cociorva, D., Johnson, J.R., Dillin, A., Yates, J.R.: Quantitative mass spectrometry identifies insulin signaling targets in C-elegans. Science 317(5838), 660–663 (2007)

    Article  CAS  Google Scholar 

  26. Zybailov, B., Mosley, A.L., Sardiu, M.E., Coleman, M.K., Florens, L., Washburn, M.P.: Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5(9), 2339–2347 (2006)

    Article  CAS  Google Scholar 

  27. Florens, L., Carozza, M.J., Swanson, S.K., Fournier, M., Coleman, M.K., Workman, J.L., Washburn, M.P.: Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40(4), 303–311 (2006)

    Article  CAS  Google Scholar 

  28. Sardiu, M.E., Cai, Y., Jin, J.J., Swanson, S.K., Conaway, R.C., Conaway, J.W., Florens, L., Washburn, M.P.: Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc. Natl. Acad. Sci. U.S.A. 105(5), 1454–1459 (2008)

    Article  CAS  Google Scholar 

  29. Gokce, E., Shuford, C.M., Franck, W.L., Dean, R.A., Muddiman, D.C.: Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J. Am. Soc. Mass Spectrom. 22(12), 2199–2208 (2011)

    Article  CAS  Google Scholar 

  30. Collier, T.S., Randall, S.M., Sarkar, P., Rao, B.M., Dean, R.A., Muddiman, D.C.: Comparison of stable-isotope labeling with amino acids in cell culture and spectral counting for relative quantification of protein expression. Rapid Commun. Mass Spectrom. 25(17), 2524–2532 (2011)

    Article  CAS  Google Scholar 

  31. Walker, S.H., Papas, B.N., Comins, D.L., Muddiman, D.C.: Interplay of permanent charge and hydrophobicity in the electrospray ionization of glycans. Anal. Chem. 82(15), 6636–6642 (2010)

    Article  CAS  Google Scholar 

  32. Walker, S.H., Lilley, L.M., Enamorado, M.F., Comins, D.L., Muddiman, D.C.: Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22(8), 1309–1317 (2011)

    Article  CAS  Google Scholar 

  33. Walker, S.H., Carlisle, B.C., Muddiman, D.C.: Systematic comparison of reverse phase and hydrophilic interaction liquid chromatography platforms for the analysis of N-linked glycans. Anal. Chem. 84(19), 8198–8206 (2012)

    Article  CAS  Google Scholar 

  34. Andrews, G.L., Shuford, C.M., Burnett, J.C., Hawkridge, A.M., Muddiman, D.C.: Coupling of a vented column with splitless nanoRPLC-ESI-MS for the improved separation and detection of brain natriuretic peptide-32 and its proteolytic peptides. J. Chromatogr. B 877(10), 948–954 (2009)

    Article  CAS  Google Scholar 

  35. Michalski, A., Damoc, E., Hauschild, J.P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox, J., Mann, M., Horning, S.: Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol. Cell. Proteom. (2011). doi:10.1074/mcp.M111.011015

  36. Imre, T., Schlosser, G., Pocsfalvi, G., Siciliano, R., Molnar-Szollosi, E., Kremmer, T., Malorni, A., Vekey, K.: Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J. Mass Spectrom. 40(11), 1472–1483 (2005)

    Article  CAS  Google Scholar 

  37. Fournier, T., Medjoubi, N.N., Porquet, D.: Alpha-1-acid glycoprotein. Biochim. Biophys. Acta - Prot. Struct. Mol. Enzymol. 1482(1/2), 157–171 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support received from the NIH – NCI IMAT Program (grant #R33 CA147988-02), the W. M. Keck Foundation, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, S.H., Taylor, A.D. & Muddiman, D.C. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy. J. Am. Soc. Mass Spectrom. 24, 1376–1384 (2013). https://doi.org/10.1007/s13361-013-0681-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0681-2

Key words

Navigation