Re-processing and re-analysis during 2017 and 2018 of sample Cr1 from the Krasnoselivka section recovered several taxa of planktonic foraminifera. Laboratory methodology to extract the small size (65–125 micron) planktonic foraminifera included weak acidisation (yielding many specimens but limited wall texture information), glauber salt fragmentation of sediment and freezing/heating in rapid alternation. The latter method provided the best preservation of foraminiferal tests.
Over 100 specimens of small size (65–125 micron) were recovered; test morphology, test preservation and wall texture were studied using a Leica M205C optical microscope, a Deltapix Modus M12ZS digital microscope (see www.deltapix.com) and the scanning electron microscope imaging fascility of AGH University, Krakow, Poland. Both optical microscopes are capable of one micron resolution with suitable illumination.
An important issue is the actual state of preservation of the planktonic tests, which leaves to be desired. Benthic foraminifera in the sample are quite well preserved with calcitic or agglutinated walls (see the section on mineralogy), and so are the nannofossils. Utilization of a Zeiss XRadia micro-CT scanner (by S. Kendall and D. N. Schmidt of the University of Bristol, UK and the senior author) on selected specimens shows the tests not to be moulds, but in fact have thin walls intact, although earliest chambers are missing (due to dissolution?). The study of selected tests in translucent light with the Leica M2005C and Deltapix M12ZS microscopes confirms that the tests are translucent. We consider that fragile test walls got corroded and that in the walls merging may have taken place of original crystals to larger lumps. Nevertheless, some trace of the original wall texture is discernible and identification of the (non aff.) taxa is positive. The valuable study by Coccioni and Premoli Silva (1994) from the Lower Cretaceous of Rio Argos (Spain) also encountered the obstacle of poorly preserved tests, but yielded new taxonomic and stratigraphic information.
Gradstein et al. (2017a) listed from sample Cr1 rare Globuligerina gulekhensis and some indeterminate specimens, one of which is almost planispiral. The current study reports seven planktonic foraminifera taxa in sample Cr1, all microperforate, including with frequent specimens Favusella hoterivica (Subbotina), with common specimens Lilliputinella eocretacea (Neagu) and Conoglobigerina gulekhensis (Gorbachik and Poroshina) and with less than 10 specimens each of the taxa Lilliputinella aff. similis (Longoria), ?Favusella sp., Hedbergella aff. handousi Salaj and ? Globuligerina sp. The record of isolated specimens of ? Favusella sp. is not dealt with.
As will be discussed in some detail below, only Conoglobigerina gulekhensis (Gorbachik and Poroshina) was known previously from Berriasian strata, and this only from two regions, Crimea and Azerbaijan. Favusella hoterivica (Subbotina) with certainty only was known from Valanginian through Aptian marine strata, and the other taxa only from Valanginian, Hauterivian or even younger stratigraphic intervals. All taxa are of Tethyan or sub-Tethyan origin.
In current literature, the generic and species taxonomy of pre-Aptian planktonic foraminifera lacks standardization and there is no published atlas by the Mesozoic Planktonic Foraminifera Working Group. Rather than trying to improve upon the taxonomy of Lower Cretaceous planktonic foraminifera, which taxonomy lacks agreement on hierarchy of test morphology and insight in evolutionary relationship of taxa, we have taken a conservative approach. In this, we mean that no effort has been made to ‘get to the bottom of’ junior and senior synonymy issues in species, or the validity of generic and species names. These issues require study of a large collection of well-preserved specimens, in samples from many pre-Aptian and particularly Berriasian sites.
Principal literature consulted includes:
- 1.
The original definition of the taxa recognized, as available in http://www.mikrotax.org/pforams/ for all but Clavihedbergella eocretacea Neagu.
- 2.
Neagu (1975, in French) for the latter taxon.
- 3.
The excellent publications by Coccioni and Premoli Silva (1994) on a diverse (albeit poorly preserved) Valanginian–Hauterivian assemblage of southern Spain, and by Butt (1979) on a diverse Hauterivian/Barremian through Aptian assemblage in DSDP Site 397, Leg 47A offshore Morocco.
- 4.
The monograph on Jurassic Conoglobigerina and Globuligerina in Gradstein (2017a, b) and Gradstein et al. (2017a, b).
- 5.
The excellent (not published) teaching atlas on Cretaceous Planktonic Foraminifera Taxonomy and Biostratigraphy by M.R. Petrizzo (and the Mesozoic Planktonic Foraminifera Working Group), which uses balanced information from research projects currently underway.
Other literature consulted for specific issues includes Gorbachik and Poroshina (1979), Wernli et al. (1995), Görög and Wernli (2003, 2004, 2013), and Huber and Leckie (2011).
Below, we will deal with the taxonomy of the observed taxa, starting with Conoglobigerina gulekhensis (Gorbachik and Poroshina), originally described from the Berriasian–early Valanginian of Azerbaijan and the Berriasian of the Tonas Basin, Crimea.
Conoglobigerina gulekhensis (Gorbachik and Poroshina) 1979
Figure 5, 1–12
1979Globuligerina gulekhensis Gorbachik and Poroshina: 286–288, Fig. 1a–c.
1979Globuligerina caucasica Gorbachik and Poroshina: 288, Figs. 2a–3, 3a–d.
1997Conoglobigerina gulekhensis (Gorbachik and Poroshina), in Simmons et al.: 24, 25, pl. 2.6, Figs. 13–15.
Non 1997Conoglobigerina caucasica (Gorbachik and Poroshina), in Simmons et al.: 24, pl. 2.6, Figs. 9–12.
Original description
Test small, no more than 0.25 micron in diameter, high trochoidal; test contour subquadratic, prominently lobate. The spire forming the initial whorl is often slightly displaced relative to the center of the ultimate whorl and sharply delineated from the surface. Peripheral margin broad and round. The test consists of 12–13 chambers forming the 2.5 to three whorls of a spiral. Chambers of initial whorls spherical or ellipsoidal, closely appressed. The size of the chambers increases gradually in each whorl; the chambers of different whorls differ appreciably in size. Septal sutures deepened, straight. Umbilicus small and narrow. Aperture opening in umbilicus, arcuate, with barely apparent lip. Test walls finely perforate; the surface appears smooth under the binocular microscope at a magnification of 96×, but distinctly expressed cancellate ornamentation is seen with the scanning electron microscope (at magnifications of 1000 and 3000×). Cells of cancellate ornamentation are irregularly tetragonal, separated by comparatively broad, high, smooth varices. The cells reach a size of 2 µm. Pores round or oval, mainly located within the cells, but sometimes also on the varices. Pores of two orders are seen; small ones measuring about 0.33 µm, and large ones measuring up to 1 µm. Small pores predominate. Test diameter varies between 0.15 and 0.25 micron and the height is 0.6 or 0.7 of the width; these measurements are for type specimens.
Discussion
Sofar the outstanding diagnosis of Gorbachik and Poroshina (1979) in the English translation of their (originally in Russian) study in the Palaeontology Journal of the American Geological Institute. The description is based on study of about 80 specimens from the Berriasian of Azerbaijan. Test variation is in height and shape of the test and number of chambers in the whorls. The test can be conical in shape, often bluntly conical, and the last whorl may contain three chambers only. This is as observed for most of our Crimean specimens which have a tiny and pointed initial test with two whorls and a large final whorl with three chambers. The original observation that the spire of the first whorls often is slightly displaced relative to the center of the ultimate whorl, and sharply delineated from the test surface, is confirmed and easily recognized, for example in the optical photography images on Figs. 5, 9 and 10.
The Tonas River Basin is listed as co-locality from which Gorbachik and Poroshina (1979) described Globuligerina caucasica and G. gulekhensis. The principal difference between the two contemporary taxa is a higher spire and more convex spiral side of G. gulekhensis. The considerable variation in height of spire and convexity does not warrant this taxonomic splitting; hence all specimens in the assemblage are considered to be variants of one species (Gradstein et al. 2017a).
Although poorly visible on our topotypic specimens on Plate 19 in Gradstein et al. (2017a) from the Tonas River Basin, the reticulate wall texture is clear under suitable magnification. The reticulate wall ornamentation suggests that Conoglobigerina gulekhensis is related to Conoglobigerina in the Jurassic and to Favusella in the Cretaceous. Hence, it is tempting to consider that C. gulekhensis evolved from Globuligerina oxfordiana like Favusella hoterivica did. This subject is taken up below in the section discussing evolution.
Curiously, the metatypes re-illustrated from Simmons et al. (1997) on Plate 19, nos. 6–7 in Gradstein et al. (2017a) show little sign of reticulation. These specimens that were originally assigned to C. caucasica both by Gorbachik and Poroshina (1979) and by Simmons et al. (1997) readily might be named Globuligerina tojeiraensis Gradstein. Hence, this species might extend from Kimmeridgian into Berriasian, but this is not clearly confirmed with our data from sample Cr1 (see our listing of ? Globuligerina sp.).
Wernli et al. (1995) claimed that Favusella hoterivica in Berriasian–Valanginian of former SE Russia, which broadly includes the region with our sample Cr1, were wrongly identified as Conoglobigerina gulekhensis. No specific and detailed information was provided that the local taxon is a junior synonym of Favusella hoterivica, and we refute the argument. In our Krasnoselivka assemblage, F. hoterivica and Conoglobigerina gulekhensis are morphologically different, as described in detail. In particular, Favusella hoterivica has the second chamber in the last whorl of four chambers markedly sticking up, whereas Conoglobigerina gulekhensis often has a higher spire, a coiling axis that clearly changes angle and wider last whorl.
Gorbachik and Poroshina (1979) list a diverse benthic foraminiferal assemblage from the Azerbaijan samples with numerous epistominids and ceratobuliminids.
Stratigraphic range
Described by Gorbachik and Poroshina (1979) from early Berriasian–early Valanginian of SE Caucasus, E. Crimea and Azerbaijan. There is currently no record of this taxon outside its narrow (Tethyan) belt in the greater Caucasian Mountains area. Wernli et al. (1995) reported that T. Gorbachik considered Favusella hoterivica from the Berriasian of the Scotian Shelf, E. Canada to be Conoglobigerina gulekhensis, an interpretation that may have been more inspired by Berriasian age specimens in eastern Canadian offshore wells than by their morphology. Closely reading the arguments by Wernli et al. (1995) on a potential Berriasian age of the taxon in samples of wells Onondaga E-84, Oneida O-25 and Gabriel C-60 leaves the possibility that specimens are of Valanginian age. All well intervals are dated as of Berriasian–Valanginian age and stage boundaries are not clearly delineated. No physical well record or lithology was provided for the critical intervals in these wells to ascertain that the record is stratigraphically continuous. Calpionellids are wanting in the so-called Berrisian age and shallow marine well samples, and dinoflagellates were listed only for Valanginian strata.
Favusella hoterivica (Subbotina 1953)
Figure 6, 1–10.
1953 Globigerina hoterivica Subbotina: 50, pl. 1, Figs. 1–4.
1978 ‘Globigerina’ hoterivica Subbotina, in Gradstein, 622, pl 9, Figs. 9–15.
1979 Hedbergella hoterivica (Subbotina), in Butt, pl.3, Figs. 1–7; pl.4, Figs. 1–6.
1995 Favusella hoterivica (Subbotina), in Wernli et al., pl. 2, 1–16, pl. 3, 1–9, pl.4.
Non 2013Favusella hoterivica (Subbotina), in Görög and Wernli: 286, Figs. 5.1–5.7.
Original description
Test small, strongly convex, turret shaped, consisting of three whorls; there are 4–5 highly inflated rounded chambers in the final whorl; these chambers are closely adjacent to one another so that the whole test looks like a disorganized accumulation of spherical chambers. The chambers grow very uniform in size. The sutures are short, slightly curved, almost straight. The umbilical aperture is a large slit in the extra-umbilical area. The aperture has a small raised lip. Wall smooth, finely porous. Greatest diameter 150 micron, greatest thickness 100 micron.
Discussion
A strongly convex test, disorganized chamber accumulation and smooth wall do not fit with the current identity of the genus species, but given that optical microscopy is challenging with this small-sized taxon, the original description is considered incomplete. A study of the types in VNIGRI might be of use, in which respect we mention that Grigelis and Gorbachik (1980) illustrate a specimen in the collection of L.A. Poroshina from the Hauterivian of Azerbaijan; unfortunately, it lacks reticulate sculpture.
A more informative description of Favusella hoterivica was provided by Coccioni and Premoli Silva (1994), as follows: Test very small to small, globigeriniform, trochospiral with intial spire moderately elevated; 2–2.5 whorls of globular chambers; 3.5–4 chambers in the last whorl; increasing rapidly in size, except for the last chamber which displays almost the same size as the penultimate one; equatorial periphery compact, slightly lobate; sutures radial and depressed on both sides; umbilicus very small to absent; aperture umbilical, as a very low arch, possibly bordered by a very thin lip; wall surface moderately favolate, typical of the genus. Diameter 70–168 micron and thickness 34–96 micron.
Coccioni and Premoli Silva (1994) reported 3, 3.5 or 4 chambers in the last whorl, overall test shape from almost rectangular to more triangular–quadrangular, and aperture low to higher arch. A bulla may be present. This description closely agrees with the variation in our assemblage, harbouring over 50 small specimens. Close inspection of the axis of coiling shows that it may change angle from the earlier to the last whorl, with the earlier 2–2.5 whorls being positioned almost sideways from the last whorl. In this sense, F. hoterivica resembles the mode of coiling of Conoglobigerina gulekhensis, which warrants more detailed study of these taxa from several localities to determine in more detail to what extent the test morphology of the two taxa overlaps. Among the specimens in our sample Cr1, several show a looped aperture, as commonly found in Globuligerina oxfordiana. A bulla-like last chamber is common. Wall texture is poorly preserved but reticulate, as seen on Fig. 6, 1a.
Favusella hoterivica is widely reported and easily recognized. Although not explicitly mentioned, a majority of our specimens and images of tests in the literature quoted show a feature that also is typical of Globuligerina oxfordiana, i.e., the second chamber of the last whorl markedly sticks up, relative to chambers one and three in that whorl. The feature is not obvious in small specimens with only 3–3.5 chambers in the last whorl.
Using the above criteria and rugulose wall texture, the specimen from the Kimmeridgian of France as illustrated by Görög and Wernli (2013) on their Fig. 5, 1a, b, and reported as Favusella hoterivica, here is assigned to Globuligerina oxfordiana. Specimens 2 through 7 in this same Fig. 5, with a stunted and compact test that strongly embraces its early whorls and a strongly reticulate wall texture, belong to Conoglobuligerina grigelisi Gradstein. The acidized tests of Tithonian age specimens from Hungary, assigned by Görög and Wernli (2004) to either Favusella hoterivica or Globuligerina oxfordiana, lack wall texture features and (unfortunately) cannot be taken into account here. In this context, it is worth mentioning that the Tithonian age core samples on Galicia Bank, offshore Portugal (Collins et al. 1996) reported with Globuligerina oxfordiana and G. bathoniana only contain a Neogene planktonic taxon (see section below on the Galicia Bank record).
Table 2 Planktonic foraminifera in the Kimmeridgian of Portugal, the Tithonian of Hungary and the Berriasian of Crimea; for details see text A well-documented record of Favusella hoterivica from the sedimentary continental margin, offshore eastern Canada (Wernli et al. 1995) already was touched upon when discussing Conoglobuligerina gulekhensis. Specimens illustrated are identical to the Hauterivian–Barremian age ones illustrated by Butt (1979) from the conjugate margin, offshore Morocco (see Fig. 6, 6).
Stratigraphic and palaeogeographic range
Type area is along the Psish River, Krassnodar Kray, Northern Caucasus, former USSR. The type level is Hauterivian and the holotype is in the VNIGRI collection, no. 5166, St.Petersburgh. The species occurs in Berriasian through lower Aptian strata and is reported widely in Tethyan to sub-Tethyan marine facies along continental margins. It is not an oceanic taxon, but it is reported on Blake Nose, at the edge of the Blake Plateau off Florida in bathyal hemipelagic sediments of Barremian age (Gradstein 1978), and in bathyal sediments of Hauterivian-Barremian age, off Morocco (Butt 1979).
Lilliputinella eocretacea (Neagu) 1975
Figure 7, 1–14a
1975Clavihedbergella eocretacea Neagu: 112–113, pl. 89, Figs. 1–10.
1979Hedbergella aff. simplex (Morrow), in Butt:, pl. 3, Figs. 11, 12.
1994Clavihedbergella eocretacea Neagu, in Coccioni and Premoli Silva: 669–670, Fig. 9, 10–18.
Description
The Mikrotax internet site does not show the original description (in French), reason why it is printed here in our English translation: Test small, consisting of a very low trochospiral, showing 2–2.5 whorls of which the last one has 4–4.5–5 chambers. Chambers globular with deeply incised and straight sutures; the last 3–4 chambers become oval, elongated or more sharply pointed. Umbilicus wide and shallow, sometimes touching the remains of apertural lips of chambers. Aperture weakly arched, interiomarginal–extra-umbilical with narrow lip, especially towards the umbilicus.
The SEM images of types on the Mikrotax internet site show the wall texture to be relatively smooth and finely rugulose. Lilliputinella is a microperforate taxon.
Neagu (1975) lists the type specimens to be mostly over 250 micron in diameter, whereas Coccioni and Premoli Silva (1994) record specimens to be between 106 and 265 micron wide and 40–142 micron thick. The specimens in our sample Cr1 fit in the lower end of the size range.
A good description of the taxon also is provided by Coccioni and Premoli Silva (1994): Test small, flat to low trochospiral, 2–2.5 whorls with predominantly 4 chambers to a maximum of 4.75 chambers in the last whorl. Chambers of the last whorls initially subglobular, then the last 2–3 tending to become elongated radially, occasionally pointed; equatorial periphery strongly lobate to substellate; sutures straight and radial on both sides; umbilicus rather large and shallow; aperture umbilical to extra-umbilical as a low arch with thin lip; original wall surface not preserved.
Coccioni and Premoli Silva (1994) record a large variability related to the degree of elongation of the last chambers and consequently to the degree of lobation of the equatorial periphery.
Stratigraphic range
Prior to the current study, Lilliputinella eocretacea was known from strata as old as Hauterivian (Coccioni and Premoli Silva 1994). The updated stratigraphic range is Berriasian through early Aptian. Given the relatively small size of the Crimean specimens, it is possibly that the test size increases stratigraphically upwards. The type specimens are from Barremian strata in Romania.
Lilliputinella aff. similis (Longoria)
Figure 8, 1, 2, 2a.
1974Hedbergella similis Longoria: 68, 69, pl. 16, Figs. 11–21.
1994Hedbergella similis, in Coccioni and Premoli Silva: 6678, 679, Fig. 13, 1–9.
Original description Medium sized, test as with genus; formed by 2–3 whorls; peripheral margin elongate, strongly lobate; 5–6 chambers in the last whorl, increasing in size as added; chambers ovate to elongate on both spiral and umbilical sides, ovoid in peripheral view; sutures radial, slightly curved, depressed on both umbilical and spiral sides; umbilicus wide, shallow; relict apertures often observed on spiral side.
Emended description Test medium sized, low trochospirally coiled; 5–6 chambers in the outer whorl, increasing slowly and gradually in size as added; chambers initially globular to subglobular, the last two or, exceptionally three tending to become slightly radially elongate, the final one may be more elongate in some specimens; chambers round at their end; spiral side low; peripheral outline ovoid, lobate; sutures straight to slightly curved on both spiral and umbilical sides; umbilicus rather wide and shallow; aperture as a low extra-umbilical arch reaching the periphery. Wall smooth and finely perforate.
So far, what is provided as description on the Mikrotax internet site. In sample Cr1, few specimens only occur; these are nearly planispiral and flat. Some show minor elongation of the last chamber. The last whorl contains 4.5 or 5 chambers. We tentatively link the specimens to the taxon described originally by Longoria (1974), which in general shows more pronounced chamber elongation.
Stratigraphic range
Originally reported from Barremian and Aptian. A larger assemblage of specimens is warranted to extend the range of this taxon with certainty back in time into Berriasian.
Hedbergella aff. handousi Salaj
Figure 8, 3, 4, 4a
1984Caucasella aff. handousi Salaj, 592, Fig. 2a–c.
Original description Test small. Coiled in a very low to planar trochospire consisting of 2.5 whorls; peripheral margin quadrate lobate; four chambers in the last whorl, increasing quadrally in sizes as added; chambers globular, somewhat ovoidal on both spiral and umbilical sides, separated by deeply incised sutures; chambers typical ovoidal in peripheral view; sutures radial, slightly curved on both spiral and umbilical sides; wall fine-perforate, surface smooth; primary aperture highly arcuate, extra-umbilical-umbilical bordered by an imperforate flap; umbilicus circular, deep.
Emended description Test small to medium, coiled on a low trochospire; 2–2.5 whorls; 4–4.5 chambers in the outer whorl increasing rather rapidly but fairly gradually in size as added; chambers globular to subglobular, laterally slightly compressed except the last globular one; equatorial periphery cross-shaped, lobate; sutures depressed, radial mainly straight; umbilical area medium sized and shallow; aperture as a low to medium arch bordered by a lip. Wall smooth, finely perforate.
So far, the excellent diagnosis was available from the Mikrotax internet site on planktonic foraminifera. The few specimens from sample Cr1 likely belong to above taxon.
Stratigraphic range
The species originally was described from the Early Hauterivian of Tunisia. Petrizzo (2015) also shows a stratigraphic range in Valanginian strata. The range now likely extends back into Berriasian.
? Globuligerina sp.
Figure 8, 5–7.
Description Specimens show a compact, low-spired test with four chambers in the last whorl, which increase slightly in size. Umbilicus is narrow. Figure 8, 5 shows a flattened apertural face and fairly high arched (and possibly looped) aperture with rim. Specimens are small (less than 125 micron) and rare. Typical specimens of Globuligerina tojeiraensis Gradstein have a wider umbilicus and somewhat stretched last chamber, but the current record might fit in the variation of this taxon.