Swiss Journal of Palaeontology

, Volume 135, Issue 2, pp 187–203 | Cite as

Palaeontology, sedimentology, and biostratigraphy of a fossiliferous outcrop of the Early Miocene Querales Formation, Falcón Basin, Venezuela

  • Leandro M. PérezEmail author
  • Juan P. Pérez Panera
  • Orangel A. Aguilera
  • Diana I. Ronchi
  • Rodolfo Sánchez
  • Miguel O. Manceñido
  • Marcelo R. Sánchez-VillagraEmail author


The top of the Querales Formation is well exposed at the Quebrada Corralito section, 17 m thick, in northern Venezuela. The section, dominated by siliciclastic accumulations of fine-grained sediments, preserves one cycle of transgressive–regressive phases of the deltaic environments facing the marine platform. An X-ray analysis revealed kaolinite as the main clay mineral. The age ranges from late Early Miocene to early Middle Miocene—zones N8 to N9, Late Burdigalian to Langhian. The section shows low biodiversity, including eleven macroinvertebrate taxa and two ichnotaxa; at its base, it contains mostly plant debris and amber from the continent, thus revealing a continental source near the littoral zone. Its middle portion preserves macroinvertebrates from the littoral zone, but also including the cephalopod Aturia sp., transported by a hydraulic flow to an area of greater depth; these macroinvertebrates are absent from overlying sections, at a time in which the basin was flooded most. The X-ray diffraction on six rock samples revealed mainly the presence of quartz with calcite, subordinated plagioclase and traces of potassium feldspar. Other minerals that compose this stratigraphic section are pyrite, dolomite and siderite, but they are disseminated in a siltstone. The section is dominated by mudstone sediments. The succession is kaolinite in the most pure fraction, and in lesser proportion smectite and illite; the stratified illite–smectite, chlorite and chlorite–smectite are present in low quantity. The mineralogical components of a molluscan valve were also examined, showing abundant pyrite, and moderate amounts of siderite and dolomite. In a part of the section, we recorded a rich assemblage of calcareous microfossils with foraminifers, nannofossils and marine ostracods. In the foraminiferal assemblage, 99 % correspond to planktonic forms. Most macroinvertebrates from benthonic assemblages suggest that they may have inhabited a near-shore marine environment, and sporadically experienced storm transport to deeper, shelf waters.


Calcareous microfossils Fossil macroinvertebrates Amber Neogene Urumaco Falcón Basin 



We thank the Rodolfo Sánchez family for their hospitality during fieldwork, Jorge González and Jorge Carrillo-Briceño for their collaboration in the design of the figures, Carlos Jaramillo and Luis Quiroz for informative discussions on the geology of the Urumaco region, Francisco Vega-Vera for kindly providing comparative material of crustaceans, and both anonymous reviewers for their valuable comments which helped to improve this manuscript. The SEM Microscope operators of the Electron Microscopy Service of the Museo de La Plata, Dr. D. Poire and X-ray services at CIG-CONICET, for assistance in the analysis of rock samples collected in the field, and the Alcaldía of Urumaco and the Instituto del Patrimonio Cultural for the permission to work in Urumaco. We thank the students of the University of Zurich of the 2011 and 2013 excursions for their assistance in the fieldwork, Dr. Loïc Costeur from the Naturhistorisches Museum of Basel Museum for access to collections deposited there and Jorge Carrillo Briceño for assistance in the field and in curatorial tasks in Urumaco. This work was supported by the Swiss NF grant 31003A-149605 to MRS-V.

Supplementary material

13358_2015_105_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 174 kb)


  1. Aberhan, M. (1994). Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios, 9, 516–545.CrossRefGoogle Scholar
  2. Aguilera, O. A., Lundberg, J., Birindelli, J., Sabaj Pérez, M., Jaramillo, C., & Sánchez-Villagra, M. R. (2013). Palaeontological evidence for the last temporal occurrence of the ancient western Amazonian river inflow into the Caribbean. PLoS One, 8(9), e76202. doi: 10.1371/journal.pone.0076202.CrossRefGoogle Scholar
  3. Allmon, W. D. (1988). Ecology of Recent Turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios, 3, 259–284.CrossRefGoogle Scholar
  4. Antoine, P.-O., De Franceschi, D., Flynn, J. J., Nel, A., Baby, P., Benammi, M., et al. (2006). Amber from western Amazonian reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Science USA, 103, 13595–13600.CrossRefGoogle Scholar
  5. Berggren, W. A., & Van Couvering, J. A. (1974). The late Neogene biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 16, 1–216.CrossRefGoogle Scholar
  6. Bolli, H. M., & Saunders, J. B. (1985). Oligocene to Holocene low latitude planktic foraminifera. In H. M. Bolli, J. B. Saunders & K. Perch-Nielsen (Eds.), Plankton Stratigraphy (pp. 155–262). Cambridge: Cambridge University Press.Google Scholar
  7. Bramlette, M. N., & Sullivan, F. R. (1961). Coccolithophorids and related nannoplankton of the early Tertiary in California. Micropaleontology, 2, 129–188.CrossRefGoogle Scholar
  8. Brenchley, P. J., & Harper, D.A.T. (1998). Palaeoecology: ecosystems, environments and evolution (402 pp.). London: Chapman & Hall.Google Scholar
  9. Buatois, L. A., & Mángano M. G. (2011). Ichnology organism-substrate interactions in space and time (366 pp.). Cambridge: Cambridge University Press.Google Scholar
  10. del Río, C., Martínez, S. A., & Scasso, R. A. (2001). Nature and origin of spectacular marine Miocene shell beds of northeastern Patagonia (Argentina): Paleoecological and bathymetric significance. Palaios, 16, 3–25.CrossRefGoogle Scholar
  11. Díaz de Gamero, M. L. (1977). Revisión de las unidades litoestratigráficas en Falcón central, en base a su contenido de foraminíferos planctónicos. Congreso Geológico de Venezuela, Memorias, I, 81–86.Google Scholar
  12. Díaz de Gamero, M. L. (1989). El Mioceno Temprano y Medio de Falcón Septentrional. GEOS, 29, 25–35.Google Scholar
  13. Díaz de Gamero, M. L. (1996). The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 385–402.CrossRefGoogle Scholar
  14. Díaz de Gamero, M. L., Mitacchione, V., & Ruíz, M. (1988). La Formación Querales en su área tipo, Falcón Noroccidental, Venezuela. Boletín de la Sociedad Venezolana de Geólogos, 34, 34–46.Google Scholar
  15. Emig, C. C. (1986). Conditions de fossilisation du genre Lingula (Brachiopoda) et implications paléoécologiques. Palaeogeography, Palaeoclimatology, Palaeoecology, 53, 245–253.CrossRefGoogle Scholar
  16. Emig, C. C. (1997). Ecology of inarticulated brachiopods. In R. L. Kaesler (Ed.), Treatise on invertebrate paleontology. Part H (revised), vol. 1 (pp. 473–495). Lawrence: Geological Society of America & University of Kansas.Google Scholar
  17. Emig, C. C., Gall, J. C., Pajaud, D., & Plaziat, J. C. (1978). Réflexions critiques sur l’ écologie et la systématique des lingules actuelles et fossiles. Géobios, 11(5), 573–609.CrossRefGoogle Scholar
  18. Feist, M., Lamprecht, I., & Müller, F. (2007). Thermal investigations of amber and copal. Thermochimica Acta, 458(1–2), 162–170.CrossRefGoogle Scholar
  19. Gamero, G. A., & Díaz de Gamero, M. L. (1963). Estudio de una sección de referencia de las formaciones Cerro Pelado y Socorro en la región de El Saladillo, Estado Falcón. GEOS, 9, 7–44.Google Scholar
  20. Gibson-Smith, J., & Gibson-Smith, W. (1974). The genus Strombina in Venezuela, with description of a new Recent and some fossil species. Boletín Informativo de la Asociación Venezolana de Geología, Minería y Petróleo, 17(4–6), 49–85.Google Scholar
  21. Gibson-Smith, J., & Gibson-Smith, W. (1983). Neogene melongenid gastropods from the Paraguaná Peninsula, Venezuela. Eclogae geologicae Helvetiae, 76(3), 719–728.Google Scholar
  22. González de Juana, C. (1937). General Geology and Stratigraphy of the Cumarebo Area, State of Falcón. Boletín de Geología y Minería, 1, 187–205.Google Scholar
  23. González de Juana, C. (1938). Contribución al estudio de la cuenca sedimentaria Zulia-Falcón. Boletín de Geología y Minería, 2, 123–138.Google Scholar
  24. González de Juana, C., Iturralde de Arozena, J. M., & Picard Cadillat, X. (1980). Geología de Venezuela y de sus cuencas petrolíferas. Tomo II. (pp. 415–1031). Caracas.Google Scholar
  25. Grimaldi, D. A. (1996). Amber: windows to the past. New York: Harry N. Abrams. 216 pp.Google Scholar
  26. Hambalek, N., Rull, V., de Digiacomo, E., & Díaz de Gamero, M. L. (1994). Evolución paleoecológica y paleoambiental de la secuencia del Neógeno en el Surco de Urumaco, estado Falcón. Estudio palinológico y litológico. Boletín de la Sociedad Venezolana de Geólogos, 19, 7–19.Google Scholar
  27. Hendy, A. (2013). Spatial and stratigraphic variation of marine paleoenvironments in the Upper Miocene Gatun Formation, Isthmus of Panama. Palaios, 28, 210–227.CrossRefGoogle Scholar
  28. Hendy, A. J. W., Jones, D. S., Moreno, F., Zapata, V., & Jaramillo, C. (2015). Neogene molluscs, shallow marine paleoenvironments, and chronostratigraphy of the Guajira Peninsula, Colombia. Swiss Journal of Palaeontology, 134, 45–75. doi: 10.1007/s13358-015-0074-1.CrossRefGoogle Scholar
  29. Hinojosa-Díaz, I. A., & Engel, M. S. (2007). A new fossil orchid bee in Colombian copal (Hymenoptera: Apidae). American Museum Novitates, 3589, 1–7.CrossRefGoogle Scholar
  30. Hodson, F. (1926). Venezuelan and Caribbean turritellas; with a list of Venezuelan type stratigraphic localities. Bulletins of American Paleontology, 11(45), 171–220.Google Scholar
  31. Hodson, F., & Hodson, H. K. (1931). Some Venezuelan mollusks. Bulletins of American Paleontology, 16(59–60), 1–132.Google Scholar
  32. Hodson, F., Hodson, H. K., & Harris, G. D. (1927). Some Venezuelan and Caribbean mollusks. Bulletins of American Paleontology, 13(49), 1–160.Google Scholar
  33. Hunter, V. F., & Bartok, P. (1974). The age and correlation of the Tertiary sediments of the Paraguaná Peninsula, Venezuela. Boletín Informativo de la Asociación Venezolana de Geología, Minería y Petróleo, 17, 143–154.Google Scholar
  34. Ingram, W. M. (1947). New fossil Cypraeidae from Venezuela and Colombia. Bulletins of American Paleontology, 31(121), 1–12.Google Scholar
  35. Johnson, K. G., Sánchez-Villagra, M. R., & Aguilera, O. (2009). The Oligocene–Miocene transition on coral reef in the Falcón Basin (NW Venezuela). Palaios, 24, 59–69.CrossRefGoogle Scholar
  36. Judson, M. L. I. (2010). Redescription of Chelifer eucarpus DALMAN (Arachnida, Chelonethi, Withiidae) and first records of pseudoscorpions in copal from Madagascar and Colombia. Palaeodiversity, 3, 33–42.Google Scholar
  37. Jung, P. (1965). Miocene mollusca of the Paraguana Peninsula, Venezuela. Bulletins of American Paleontology, 49(223), 385–652.Google Scholar
  38. Jung, P. (1966a). Miocaene Mollusken von der Halbinsel Paraguaná, Venezuela. Verkürzte Fassung der Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, 16 pp.Google Scholar
  39. Jung, P. (1966b). Zwei miocaene Arten von Aturia (Nautilaceae). Eclogae Geologicae Helvetiae, 59(1), 485–492.Google Scholar
  40. Karsten, H. (1851). Über die geognostischen Verhältnisse des nördlichen Venezuela. Archiv Mineralogie, Geognosie, Bergbau und Hüttenkunde, 24, 440–479.Google Scholar
  41. Klug, C., & Etter, W. (2012). Los cefalópodos: Los ammonites y sus parientes. In M. R. Sánchez-Villagra (Ed.), Venezuela Paleontológica, evolución de la diversidad en el pasado geológico (378 pp.). Printworkart Press, Zurich.Google Scholar
  42. Landau, B., & Marques da Silva, C. (2010). Early Pliocene gastropods of Cubagua, Venezuela: taxonomy, paleobiogeography and ecostratigraphy. Palaeontos, 19, 1–221.Google Scholar
  43. Lazo, D. G., Cichowolski, M., Rodríguez, D. L., & Aguirre-Urreta M. B. (2005). Lithofacies, palaeoecology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquen Basin, Argentina. In G. D. Veiga, L. A. Spalletti, J.A. Howell., & Schwarz. E (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. Geological Society, London, Special Publications, 252, 295–315.Google Scholar
  44. Liddle, R. A. (1946). The Geology of Venezuela and Trinidad (2nd ed.). Ithaca: Paleontological Research Institute. 890 p.Google Scholar
  45. Lorente, M. A. (1986). Palynology and Palynofacies of the upper Tertiary in Venezuela. Dissertationes Botanicae, 99 (p. 224). Berlin: J. Cramer.Google Scholar
  46. Miller, A. K., & Thompson, M. I. (1937). Beiträge zur Kenntnis tropisch-amerikanischer Tertiärmollusken. Teil VI. Some tertiary Nautiloids from Venezuela and Trinidad. Eclogae Geologicae Helvetiae, 30(1), 59–73.Google Scholar
  47. Murray, J. W. (1991). Ecology and paleoecology of benthic foraminifera (p. 397). Avon: Longman Scientific & Technical.Google Scholar
  48. Murray, J. W. (2006). Ecology and applications of benthic foraminifera (p. 426). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Okada, H., & Bukry, D. (1980). Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology, 5, 321–325.CrossRefGoogle Scholar
  50. Pereira, R., de Souza Carvalho, I., Simoneit, B. R. T., & de Almeida Azevedo, D. (2009). Molecular composition and chemisystematic aspects of Cretaceous amber from Amazonas, Araripe and Recôncavo basins, Brazil. Organic Geochemistry, 40, 863–875.CrossRefGoogle Scholar
  51. Quiroz, L., & Jaramillo, C. (2010). Stratigraphy and sedimentary environments of Miocene shallow to marginal marine deposits in the Urumaco trough, Falcon basin, western Venezuela. In M. R. Sánchez-Villagra, O. Aguilera, & A. Carlini (Eds.), Urumaco and Venezuelan paleontology, the fossil record of the northern neotropics (304 p.). Bloomington: Indiana University Press.Google Scholar
  52. Rutsch, R. F. (1930). Einige interessante Gastropoden aus dem Tertiär der Staaten Falcón und Lara (Venezuela). Eclogae Geologicae Helvetiae, 23(2), 604–614.Google Scholar
  53. Rutsch, R. F. (1934). Die Gastropoden aus dem Neogen der Punta Gavilan in Nord-Venezuela. I–II. Abhandlungen der schweizerischen paläontologischen Gesellschaft, 54–55, 1–169.Google Scholar
  54. Sánchez-Villagra, M. R., Aguilera, O. A., & Carlini, A. A. (Eds.). (2010). Urumaco and Venezuelan paleontology – the fossil record of the northern neotropics (304 p.). Bloomington: Indiana University Press.Google Scholar
  55. Senn, A. (1935). Die stratigraphische Verbreitung der Tertiären Orbitoiden, mit spezieller Berücksichtigung ihres Vorkommens in Nord-Venezuela und Nord-Marokko. Eclogae Geologicae Helvetiae, 28(1), 51–113, 369–373.Google Scholar
  56. Smith, C., Collins, L., Jaramillo, C., & Quiroz, L. (2010). Marine paleoenvironments of Miocene–Pliocene formations of north-central Falcón State, Venezuela. Journal of Foraminiferal Research, 40, 266–282.CrossRefGoogle Scholar
  57. Stainforth, R. M. (1962). Definitions of some new stratigraphic units in western Venezuela: Las Pilas, Cocuiza, Vergel, EL Jebe, Tres Esquinas and Nazaret. Asociación Venezolana de Geología, Mineralogía y Petrología, Boletín Informativo, 5(10), 279–282.Google Scholar
  58. Stanley, S. M. (1970). Relation of shell form to life habits of the bivalvia (Mollusca). The Geological Society of America, Memoir, 125, 1–296.CrossRefGoogle Scholar
  59. Weisbord, N. E. (1962). Late Cenozoic gastropods from northern Venezuela. Bulletins of American Paleontology, 42(193), 1–672.Google Scholar
  60. Weisbord, N. E. (1964a). Late Cenozoic pelecypods from northern Venezuela. Bulletins of American Paleontology, 45(204), 1–564.Google Scholar
  61. Weisbord, N. E. (1964b). Late Cenozoic scaphopods and serpulid polychaetes from northern Venezuela. Bulletins of American Paleontology, 47(214), 111–199.Google Scholar
  62. Wesselingh, F. P., Hoorn, M. C., Guerrero, J., Räsänen, M., Romero, Pittmann L., & Salo, J. (2006). The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for Late Neogene landscape evolution. Scripta Geologica, 133, 291–322.Google Scholar
  63. Wheeler, C. B. (1963). Oligocene and Lower Miocene stratigraphy of Western and Northeastern Falcón Basin, Venezuela. Bulletin of the American Association of Petroleum Geologists, 47, 35–68.Google Scholar
  64. Wozniak, J., & Wozniak, M. H. (1987). Bioestratigrafía de la región nor-central de la Serranía de Falcón, Venezuela nor-occidental. Boletín de Geología, 16, 101–139.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2015

Authors and Affiliations

  • Leandro M. Pérez
    • 1
    Email author
  • Juan P. Pérez Panera
    • 1
    • 2
  • Orangel A. Aguilera
    • 3
  • Diana I. Ronchi
    • 2
  • Rodolfo Sánchez
    • 4
  • Miguel O. Manceñido
    • 1
  • Marcelo R. Sánchez-Villagra
    • 5
    Email author
  1. 1.División Paleozoología InvertebradosMuseo de La Plata, Univ. Nac. La Plata-CONICETLa PlataArgentina
  2. 2.YPF-TECNOLOGÍA S.A. Biostratigraphy labEnsenadaArgentina
  3. 3.Programa de Pós-graduação em Biologia Marinha e Ambientes CosteirosInstituto de Biologia, Universidade Federal FluminenseNiteróiBrazil
  4. 4.Museo de Paleontología, Municipio UrumacoEstado FalcónVenezuela
  5. 5.Paläontologisches Institut und Museum, Universität ZürichZurichSwitzerland

Personalised recommendations