Abrieux A, Xue Y, Cai Y et al (2020) EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci U S A 117:15293–15304. https://doi.org/10.1073/pnas.2004262117
CAS
Article
PubMed
PubMed Central
Google Scholar
Allada R, White NE, So WV et al (1998) A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804. https://doi.org/10.1016/S0092-8674(00)81440-3
CAS
Article
PubMed
Google Scholar
Anduaga AM, Nagy D, Costa R, Kyriacou CP (2018) Diapause in Drosophila melanogaster – photoperiodicity, cold tolerance and metabolites. J Insect Physiol 105:46–53. https://doi.org/10.1016/j.jinsphys.2018.01.003
CAS
Article
PubMed
Google Scholar
Ankersmit GW (1968) The photoperiod as a control agent against Adoxophyes reticulana (Lepidoptera; Tortricidae). Entomol Exp Appl 11:231–240
Article
Google Scholar
Bajgar A, Dolezel D, Hodkova M (2013a) Endocrine regulation of non-circadian behavior of circadian genes in insect gut. J Insect Physiol 59:881–886. https://doi.org/10.1016/j.jinsphys.2013.06.004
CAS
Article
PubMed
Google Scholar
Bajgar A, Jindra M, Dolezel D (2013b) Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A 110:4416–4421. https://doi.org/10.1073/pnas.1217060110
Article
PubMed
PubMed Central
Google Scholar
Barberà M, Collantes-Alegre JM, Martínez-Torres D (2017) Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem Mol Biol 83:54–67. https://doi.org/10.1016/j.ibmb.2017.02.006
CAS
Article
PubMed
Google Scholar
Barberà M, Collantes-Alegre JM, Martínez-Torres D (2022) Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum. Insect Mol Biol 31:159–169. https://doi.org/10.1111/imb.12747
CAS
Article
PubMed
Google Scholar
Beach RF, Craig GB (1979) Photoinhibition of diapause in field populations of Aedes atropalpus. Environ Entomol 8:392–396. https://doi.org/10.1093/EE/8.3.392
Article
Google Scholar
Bean DW, Dalin P, Dudley TL (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 5:511–523. https://doi.org/10.1111/j.1752-4571.2012.00262.x
Article
PubMed
PubMed Central
Google Scholar
Beer K, Helfrich-Förster C (2020) Model and non-model insects in chronobiology. Front Behav Neurosci 14:601676. https://doi.org/10.3389/fnbeh.2020.601676
CAS
Article
PubMed
PubMed Central
Google Scholar
Beer K, Joschinski J, Arrazola Sastre A et al (2017) A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci Rep 7:14906. https://doi.org/10.1038/s41598-017-15014-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Berlinger MJ, Ankersmit GW (1976) Manipulation with the photoperiod as a method of control of Adoxophyes orana (Lepidoptera, Tortricidae). Entomol Exp Appl 19:96–107
Article
Google Scholar
Berndt A, Kottke T, Breitkreuz H et al (2007) A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282:13011–13021. https://doi.org/10.1074/jbc.M608872200
CAS
Article
PubMed
Google Scholar
Bertossa RC, Van De Zande L, Beukeboom LW, Beersma DGM (2014) Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol Int 31:749–760. https://doi.org/10.3109/07420528.2014.880451
Article
PubMed
PubMed Central
Google Scholar
Bowen MF, Saunders DS, Bollenbacher WE, Glbert LI (1984) In vitro reprogramming of the photoperiodic clock in an insect brain - retrocerebral complex. Proc Natl Acad Sci U S A 81:5881–5884. https://doi.org/10.1073/pnas.81.18.5881
CAS
Article
PubMed
PubMed Central
Google Scholar
Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54:590–607. https://doi.org/10.1111/j.1438-8677.1937.tb01941.x
Article
Google Scholar
Claret J, Volkoff N (1992) Vitamin A is essential for two processes involved in the photoperiodic reaction in Pieris brassicae. J Insect Physiol 38:569–574. https://doi.org/10.1016/0022-1910(92)90108-P
CAS
Article
Google Scholar
Colinet H, Boivin G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol Control 58:83–95. https://doi.org/10.1016/J.BIOCONTROL.2011.04.014
Article
Google Scholar
Colizzi FS, Beer K, Cuti P et al (2021) Antibodies against the clock proteins period and cryptochrome reveal the neuronal organization of the circadian clock in the pea aphid. Front Physiol 12:705048. https://doi.org/10.3389/fphys.2021.705048
Article
PubMed
PubMed Central
Google Scholar
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D (2018) Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. J Insect Physiol 104:48–59. https://doi.org/10.1016/j.jinsphys.2017.11.009
CAS
Article
PubMed
Google Scholar
Cymborowski B, Lewis RD, Hong SF, Saunders DS (1994) Circadian locomotor activity rhythms and their entrainment to light-dark cycles continue in flies (Calliphora vicina) surgically deprived of their optic lobes. J Insect Physiol 40:501–510. https://doi.org/10.1016/0022-1910(94)90123-6
Article
Google Scholar
Dalla Benetta E, Beukeboom LW, van de Zande L (2019) Adaptive differences in circadian clock gene expression patterns and photoperiodic diapause induction in Nasonia vitripennis. Am Nat 193:881–896. https://doi.org/10.1086/703159
Article
PubMed
Google Scholar
Danbara Y, Sakamoto T, Uryu O, Tomioka K (2010) RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus. J Insect Physiol 56:1738–1745. https://doi.org/10.1016/j.jinsphys.2010.07.002
CAS
Article
PubMed
Google Scholar
Danilevsky AS, Goryshin NI, Tyshchenko VP (1970) Biological rhythms in terrestrial arthropods. Annu Rev Entomol 15:201–244. https://doi.org/10.1146/annurev.en.15.010170.001221
Article
Google Scholar
Denlinger DL (2022) Insect diapause. Cambridge University Press, Cambridge
Book
Google Scholar
Des Marteaux L, Xi J, Mano G, Goto SG (2022) Circadian clock outputs regulating insect photoperiodism: a potential role for glutamate transporter. Biochem Biophys Res Commun 589:100–106. https://doi.org/10.1016/j.bbrc.2021.12.014
CAS
Article
PubMed
Google Scholar
Emerson KJ, Bradshaw WE, Holzapfel CM (2009a) Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Genet 25:217–225. https://doi.org/10.1016/j.tig.2009.03.009
CAS
Article
PubMed
Google Scholar
Emerson KJ, Uyemura AM, McDaniel KL et al (2009b) Environmental control of ovarian dormancy in natural populations of Drosophila melanogaster. J Comp Physiol A 195:825–829. https://doi.org/10.1007/s00359-009-0460-5
Article
Google Scholar
Erickson PA, Weller CA, Song DY et al (2020) Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLOS Genet 16:e1009110. https://doi.org/10.1371/JOURNAL.PGEN.1009110
CAS
Article
PubMed
PubMed Central
Google Scholar
Fyie LR, Gardiner MM, Meuti ME (2021) Artificial light at night alters the seasonal responses of biting mosquitoes. J Insect Physiol 129:104194. https://doi.org/10.1016/j.jinsphys.2021.104194
CAS
Article
PubMed
Google Scholar
Gao N, Von Schantz M, Foster RG, Hardie J (1999) The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. J Insect Physiol 45:1011–1019. https://doi.org/10.1016/S0022-1910(99)00082-7
CAS
Article
PubMed
Google Scholar
Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606
Google Scholar
Gnagey AL, Denlinger DL (1984) Photoperiodic induction of pupal diapause in the flesh fly, Sarcophaga crassipalpis: embryonic sensitivity. J Comp Physiol B 154:91–96. https://doi.org/10.1007/BF00683221
Article
Google Scholar
Gomi T (2007) Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan. Ecol Res 22:855–861. https://doi.org/10.1007/s11284-006-0327-y
Article
Google Scholar
Goto SG (2009) Genetic analysis of diapause capability and association between larval and pupal photoperiodic responses in the flesh fly Sarcophaga similis. Physiol Entomol 34:46–51. https://doi.org/10.1111/j.1365-3032.2008.00650.x
Article
Google Scholar
Goto SG, Denlinger DL (2002) Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. J Insect Physiol 48:803–816. https://doi.org/10.1016/S0022-1910(02)00108-7
CAS
Article
PubMed
Google Scholar
Goto SG, Nagata M (2022) The circadian clock gene (Clock) regulates photoperiodic time measurement and its downstream process in maternal induction of embryonic diapause in a cricket. Eur J Entomol 119:12–22. https://doi.org/10.14411/eje.2022.002
Article
Google Scholar
Goto SG, Numata H (2009a) Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis. J Insect Physiol 55:401–407. https://doi.org/10.1016/j.jinsphys.2008.11.008
CAS
Article
PubMed
Google Scholar
Goto SG, Numata H (2009b) Alteration of the pupal diapause program and regulation of larval duration by photoperiod in the flesh fly Sarcophaga similis Meade (Diptera: Sarcophagidae). Appl Entomol Zool 44:603–609. https://doi.org/10.1303/aez.2009.603
Article
Google Scholar
Goto SG, Numata H (2014) Insect photoperiodism. In: Hoffmann KH (ed) Insect molecular biology and ecology. CRC Press, Boca Raton, pp 217–244
Google Scholar
Goto SG, Shiga S, Numata H (2010) Photoperiodism in insects: perception of light and the role of clock genes. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiodism: the biological calendar. Oxford University Press, Oxford, pp 258–286
Google Scholar
Grevstad FS, Coop LB (2015) The consequences of photoperiodism for organisms in new climates. Ecol Appl 25:1506–1517. https://doi.org/10.1890/14-2071.1
Article
PubMed
Google Scholar
Grevstad FS, Wepprich T, Barker B et al (2022) Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects. Ecol Appl. https://doi.org/10.1002/eap.2557
Article
PubMed
Google Scholar
Grima B, Chélot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873. https://doi.org/10.1038/nature02935
CAS
Article
PubMed
Google Scholar
Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Annu Rev Entomol 56:103–121. https://doi.org/10.1146/annurev-ento-112408-085436
CAS
Article
PubMed
Google Scholar
Hamasaka Y, Watari Y, Arai T et al (2001) Retinal and extraretinal pathways for entrainment of the circadian activity rhythm in the blow fly, Protophormia terraenovae. J Insect Physiol 47:867–875. https://doi.org/10.1016/S0022-1910(01)00059-2
CAS
Article
Google Scholar
Hasebe M, Kotaki T, Shiga S (2022) Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. J Insect Physiol 137:104359. https://doi.org/10.1016/j.jinsphys.2022.104359
CAS
Article
PubMed
Google Scholar
Hasegawa K, Shimizu I (1987) In vivo and in vitro photoperiodic induction of diapause using isolated brain-suboesophageal ganglion complexes of the silkworm, Bombyx mori. J Insect Physiol 33:959–966. https://doi.org/10.1016/0022-1910(87)90008-4
Article
Google Scholar
Hayes DK, Sullivan WN, Oliver MZ, Schechter MS (1970) Photoperiod manipulation of insect diapause: a method of pest control? Science 169:382–383
CAS
Article
Google Scholar
Hayes DK, Cawley BM, Sullivan WN et al (1974) The effect of added light pulses on overwintering and diapause, under natural light and temperature conditions, of four species of Lepidoptera. Environ Entomol 3:863–865. https://doi.org/10.1093/EE/3.5.863
Article
Google Scholar
Helfrich-Förster C (2020) Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A 206:259–272. https://doi.org/10.1007/s00359-019-01379-5
Article
Google Scholar
Hori Y, Numata H, Shiga S, Goto SG (2014) Both the anterior and posterior eyes function as photoreceptors for photoperiodic termination of diapause in the two-spotted spider mite. J Comp Physiol A 200:161–167. https://doi.org/10.1007/s00359-013-0872-0
Article
Google Scholar
Hut RA, Paolucci S, Dor R et al (2013) Latitudinal clines: an evolutionary view on biological rhythms. Proc R Soc B Biol Sci 280:1–9. https://doi.org/10.1098/rspb.2013.0433
Article
Google Scholar
Ichikawa A, Ikeda M, Goto SG (2020) Cold storage of diapausing larvae and post-storage performance of adults in the blowfly Lucilia sericata (Diptera: Calliphoridae). Appl Entomol Zool 55:321–327. https://doi.org/10.1007/s13355-020-00685-8
Article
Google Scholar
Iiams SE, Lugena AB, Zhang Y et al (2019) Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci U S A 116:25214–25221. https://doi.org/10.1073/pnas.1913915116
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikeda K, Daimon T, Sezutsu H et al (2019) Involvement of the clock gene period in the circadian rhythm of the silkmoth Bombyx mori. J Biol Rhythms 34:283–292. https://doi.org/10.1177/0748730419841185
CAS
Article
PubMed
Google Scholar
Ikeda K, Daimon T, Shiomi K et al (2021) Involvement of the clock gene period in the photoperiodism of the silkmoth Bombyx mori. Zoolog Sci 38:523–530. https://doi.org/10.2108/zs210081
Article
PubMed
Google Scholar
Ikeno T (2012) Photoperiodic response under the control of circadian clock genes in the bean bug Riptortus pedestrsis. Ph. D. thesis, Osaka City University, Japan
Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol 8:116. https://doi.org/10.1186/1741-7007-8-116
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikeno T, Katagiri C, Numata H, Goto SG (2011a) Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris. Insect Mol Biol 20:409–415. https://doi.org/10.1111/j.1365-2583.2011.01075.x
CAS
Article
PubMed
Google Scholar
Ikeno T, Numata H, Goto SG (2011b) Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol 57:935–938. https://doi.org/10.1016/j.jinsphys.2011.04.006
CAS
Article
PubMed
Google Scholar
Ikeno T, Numata H, Goto SG (2011c) Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem Biophys Res Commun 410:394–397. https://doi.org/10.1016/j.bbrc.2011.05.142
CAS
Article
PubMed
Google Scholar
Ikeno T, Ishikawa K, Numata H, Goto SG (2013) Circadian clock gene clock is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiol Entomol 38:157–162. https://doi.org/10.1111/phen.12013
CAS
Article
Google Scholar
Ikeno T, Numata H, Goto SG, Shiga S (2014) Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris. J Exp Biol 217:453–462. https://doi.org/10.1242/jeb.091801
CAS
Article
PubMed
Google Scholar
Ito C, Goto SG, Shiga S et al (2008) Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0800145105
Article
PubMed
PubMed Central
Google Scholar
Kistenpfennig C, Nakayama M, Nihara R et al (2018) A Tug-of-War between cryptochrome and the visual system allows the adaptation of evening activity to long photoperiods in Drosophila melanogaster. J Biol Rhythms 33:24–34. https://doi.org/10.1177/0748730417738612
CAS
Article
PubMed
Google Scholar
Klarsfeld A, Malpel S, Michard-Vanhée C et al (2004) Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J Neurosci 24:1468–1477. https://doi.org/10.1523/JNEUROSCI.3661-03.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127. https://doi.org/10.1016/j.jinsphys.2005.09.008
CAS
Article
PubMed
Google Scholar
Koštál V, Závodská R, Denlinger D (2009) Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. J Insect Physiol 55:408–414. https://doi.org/10.1016/j.jinsphys.2008.12.011
CAS
Article
PubMed
Google Scholar
Kotwica-Rolinska J, Pivarciova L, Vaneckova H, Dolezel D (2017) The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage. Physiol Entomol 42:266–273. https://doi.org/10.1111/phen.12197
CAS
Article
Google Scholar
Kotwica-Rolinska J, Chodáková L, Smýkal V et al (2022a) Loss of timeless underlies an evolutionary transition within the circadian clock. Mol Biol Evol 39:msab346. https://doi.org/10.1093/molbev/msab346
CAS
Article
PubMed
Google Scholar
Kotwica-Rolinska J, Damulewicz M, Chodakova L et al (2022b) Pigment dispersing factor is a circadian clock output and regulates photoperiodic response in the linden bug, Pyrrhocoris apterus. Front Physiol 13:884909. https://doi.org/10.3389/fphys.2022.884909
Article
PubMed
PubMed Central
Google Scholar
Kubrak OI, Kucerová L, Theopold U et al (2016) Characterization of reproductive dormancy in male Drosophila melanogaster. Front Physiol 7:1–13. https://doi.org/10.3389/fphys.2016.00572
Article
Google Scholar
Kumar S, Neven LG, Zhu H, Zhang R (2015) Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J Econ Entomol 108:1708–1719. https://doi.org/10.1093/jee/tov166
Article
PubMed
Google Scholar
Kutaragi Y, Tokuoka A, Tomiyama Y et al (2018) A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes. Zool Lett 4:26. https://doi.org/10.1186/s40851-018-0109-8
Article
Google Scholar
Lees AD (1964) The location of the photoperiodic receptors in the aphid Megoura viciae Buckton. J Exp Biol 41:119–133. https://doi.org/10.1242/jeb.41.1.119
CAS
Article
PubMed
Google Scholar
Lees AD (1973) Photoperiodic time measurement in the aphid Megoura viciae. J Insect Physiol 19:2279–2316. https://doi.org/10.1016/0022-1910(73)90237-0
Article
Google Scholar
Lees AD (1981) Action spectra for the photoperiodic control of polymorphism in the aphid Megoura viciae. J Insect Physiol 27:761–771. https://doi.org/10.1016/0022-1910(81)90066-4
Article
Google Scholar
Li Y, Wang M, Gao F et al (2018) Exploiting diapause and cold tolerance to enhance the use of the green lacewing Chrysopa formosa for biological control. Biol Control 127:116–126. https://doi.org/10.1016/J.BIOCONTROL.2018.08.024
Article
Google Scholar
Lindestad O, Wheat CW, Nylin S, Gotthard K (2019) Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology 100:e02550. https://doi.org/10.1002/ecy.2550
Article
PubMed
Google Scholar
Lindestad O, Nylin S, Wheat CW, Gotthard K (2022) Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Mol Ecol 31:1461–1475. https://doi.org/10.1111/mec.16331
Article
PubMed
Google Scholar
Marcovitch S (1923) Plant lice and light exposure. Science 58:537–538. https://doi.org/10.1126/science.58.1513.537-a
CAS
Article
PubMed
Google Scholar
Merlin C, Beaver LE, Taylor OR et al (2013) Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res 23:159–168. https://doi.org/10.1101/gr.145599.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Meuti ME, Stone M, Ikeno T, Denlinger DL (2015) Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J Exp Biol 218:412–422. https://doi.org/10.1242/jeb.113233
Article
PubMed
PubMed Central
Google Scholar
Mohamed AAM, Wang Q, Bembenek J et al (2014) N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. PLoS ONE 9:e92680. https://doi.org/10.1371/journal.pone.0092680
CAS
Article
PubMed
PubMed Central
Google Scholar
Morita A, Numata H (1999) Localization of the photoreceptor for photoperiodism in the stink bug, Plautia crossota stali. Physiol Entomol 24:189–195. https://doi.org/10.1046/j.1365-3032.1999.00130.x
Article
Google Scholar
Mukai A, Goto SG (2016) The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Appl Entomol Zool 51:185–194. https://doi.org/10.1007/s13355-015-0384-1
Article
Google Scholar
Mukai A, Yamaguchi K, Goto SG (2021) Urban warming and artificial light alter dormancy in the flesh fly. R Soc Open Sci 8:210866. https://doi.org/10.1098/rsos.210866
Article
PubMed
PubMed Central
Google Scholar
Nagy D, Cusumano P, Andreatta G et al (2019) Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLOS Genet 15:e1008158. https://doi.org/10.1371/journal.pgen.1008158
CAS
Article
PubMed
PubMed Central
Google Scholar
Nielsen AL, Chen S, Fleischer SJ (2016) Coupling developmental physiology, photoperiod, and temperature to model phenology and dynamics of an invasive heteropteran, Halyomorpha halys. Front Physiol 7:165. https://doi.org/10.3389/FPHYS.2016.00165/BIBTEX
Article
PubMed
PubMed Central
Google Scholar
Noguchi H, Hayakawa Y (1997) Role of dopamine at the onset of pupal diapause in the cabbage armyworm Mamestra brassicae. FEBS Lett 413:157–161. https://doi.org/10.1016/S0014-5793(97)00848-X
CAS
Article
PubMed
Google Scholar
Omura S, Numata H, Goto SG (2016) Circadian clock regulates photoperiodic responses governed by distinct output pathways in the bean bug, Riptortus pedestris. Biol Rhythm Res 47:937–945. https://doi.org/10.1080/09291016.2016.1212515
CAS
Article
Google Scholar
Paolucci S, Van de Zande L, Beukeboom LW (2013) Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol 26:705–718. https://doi.org/10.1111/jeb.12113
CAS
Article
PubMed
Google Scholar
Paolucci S, Salis L, Vermeulen CJ et al (2016) QTL analysis of the photoperiodic response and clinal distribution of period alleles in Nasonia vitripennis. Mol Ecol 25:4805–4817. https://doi.org/10.1111/mec.13802
CAS
Article
PubMed
Google Scholar
Paolucci S, Dalla Benetta E, Salis L et al (2019) Latitudinal variation in circadian rhythmicity in Nasonia vitripennis. Behav Sci (basel) 9:115. https://doi.org/10.3390/bs9110115
Article
Google Scholar
Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84. https://doi.org/10.1038/s41580-019-0179-2
CAS
Article
PubMed
Google Scholar
Pavelka J, Shimada K, Kostal V (2003) TIMELESS : a link between fly’s circadian and photoperiodic clocks? Eur J Entomol 100:255–265. https://doi.org/10.14411/eje.2003.041
CAS
Article
Google Scholar
Peffers CS, Pomeroy LW, Meuti ME (2021) Critical photoperiod and its potential to predict mosquito distributions and control medically important pests. J Med Entomol 58:1610–1618. https://doi.org/10.1093/JME/TJAB049
Article
PubMed
Google Scholar
Pittendrigh CS, Minis DH (1964) Theentrainment of circadian oscillations by light and their role as photoperiodic clocks. Amer Natural 98:261–294
Article
Google Scholar
Pollard CP, Griffin CT, de Andrade Moral R et al (2020) phenModel: a temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst. Ecol Modell 416:108910. https://doi.org/10.1016/j.ecolmodel.2019.108910
Article
Google Scholar
Pruisscher P, Nylin S, Gotthard K, Wheat CW (2018) Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol 27:3613–3626. https://doi.org/10.1111/mec.14829
Article
Google Scholar
Pruisscher P, Nylin S, Wheat CW, Gotthard K (2021) A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes. Evolution 75:490–500. https://doi.org/10.1111/evo.14151
CAS
Article
PubMed
Google Scholar
Sakamoto T, Tomioka K (2007) Effects of unilateral compound-eye removal on the photoperiodic responses of nymphal development in the cricket Modicogryllus siamensis. Zoolog Sci 24:604–610. https://doi.org/10.2108/zsj.24.604
Article
PubMed
Google Scholar
Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythms 24:379–390. https://doi.org/10.1177/0748730409341523
CAS
Article
PubMed
Google Scholar
Sandrelli F, Tauber E, Pegoraro M et al (2007) A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316:1898–1900. https://doi.org/10.1126/science.1138426
CAS
Article
PubMed
Google Scholar
Sandrelli F, Costa R, Kyriacou CP, Rosato E (2008) Comparative analysis of circadian clock genes in insects. Insect Mol Biol 17:447–463. https://doi.org/10.1111/j.1365-2583.2008.00832.x
CAS
Article
PubMed
Google Scholar
Saunders DS (1974) Evidence for ‘dawn’ and ‘dusk’ oscillators in the Nasonia photoperiodic clock. J Insect Physiol 20:77–88. https://doi.org/10.1016/0022-1910(74)90125-5
Article
Google Scholar
Saunders DS (1975) Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature 253:732–734. https://doi.org/10.1038/253732a0
CAS
Article
PubMed
Google Scholar
Saunders DS (1979) External coincidence and the photoinducible phase in the Sarcophaga photoperiodic clock. J Comp Physiol A 132:179–189. https://doi.org/10.1007/BF00610722
Article
Google Scholar
Saunders DS (2002) Insect clocks, 3rd edn. Elsevier Science, Amsterdam
Google Scholar
Saunders DS (2010) Controversial aspects of photoperiodism in insects and mites. J Insect Physiol 56:1491–1502. https://doi.org/10.1016/j.jinsphys.2010.05.002
CAS
Article
PubMed
Google Scholar
Saunders DS (2012) Insect photoperiodism: seeing the light. Physiol Entomol 37:207–218. https://doi.org/10.1111/j.1365-3032.2012.00837.x
Article
Google Scholar
Saunders DS (2013) Insect photoperiodism: measuring the night. J Insect Physiol 59:1–10. https://doi.org/10.1016/j.jinsphys.2012.11.003
CAS
Article
PubMed
Google Scholar
Saunders DS (2020) Dormancy, diapause, and the role of the circadian system in insect photoperiodism. Annu Rev Entomol 65:373–389. https://doi.org/10.1146/annurev-ento-011019-025116
CAS
Article
PubMed
Google Scholar
Saunders DS, Cymborowski B (1996) Removal of optic lobes of adult blow flies (Calliphora vicina) leaves photoperiodic induction of larval diapause intact. J Insect Physiol 42:807–811. https://doi.org/10.1016/0022-1910(96)00007-8
CAS
Article
Google Scholar
Saunders DS, Henrich VC, Gilbert LI (1989) Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci U S A 86:3748–3752. https://doi.org/10.1073/pnas.86.10.3748
CAS
Article
PubMed
PubMed Central
Google Scholar
Sawyer LA, Hennessy JM, Peixoto AA et al (1997) Natural variation in a Drosophila Clock gene and temperature compensation. Science 278:2117–2120. https://doi.org/10.1126/science.278.5346.2117
CAS
Article
PubMed
Google Scholar
Schechter MS, Hayes DK, Sullivan WN (1971) Manipulation of photoperiod to control insects. Isr J Entomol 6:143–168
CAS
Google Scholar
Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606. https://doi.org/10.1126/science.8128246
CAS
Article
PubMed
Google Scholar
Senthilan PR, Grebler R, Reinhard N et al (2019) Role of rhodopsins as circadian photoreceptors in the Drosophila melanogaster. Biology (basel). https://doi.org/10.3390/biology8010006
Article
Google Scholar
Shafer OT, Yao Z (2014) Pigment-dispersing factor signaling and circadian rhythms in insect locomotor activity. Curr Opin Insect Sci 1:73–80. https://doi.org/10.1016/J.COIS.2014.05.002
Article
PubMed
PubMed Central
Google Scholar
Shiga S, Numata H (1996) Effects of compound eye-removal on the photoperiodic response of the band-legged ground cricket, Pteronemobius nigrofasciatus. J Comp Physiol A 179:625–633. https://doi.org/10.1007/BF00216127
Article
Google Scholar
Shiga S, Numata H (1997) Induction of reproductive diapause via perception of photoperiod through the compound eyes in the adult blow fly, Protophormia terraenovae. J Comp Physiol A 181:35–40. https://doi.org/10.1007/s003590050090
Article
Google Scholar
Shiga S, Numata H, Yoshioka E (1999) Localization of the photoreceptor and pacemaker for the circadian activity rhythm in the band-legged ground cricket, Dianemobius nigrofasciatus. Zoolog Sci 16:193–201. https://doi.org/10.2108/zsj.16.193
Article
Google Scholar
Shimizu I, Yamakawa Y, Shimazaki Y, Iwasa T (2001) Molecular cloning of Bombyx cerebral opsin (boceropsin) and cellular localization of its expression in the silkworm brain. Biochem Biophys Res Commun 287:27–34. https://doi.org/10.1006/bbrc.2001.5540
CAS
Article
PubMed
Google Scholar
Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421. https://doi.org/10.1007/s13355-013-0219-x
Article
Google Scholar
Shintani Y, Shiga S, Numata H (2009) Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii. J Exp Biol 212:3651–3655. https://doi.org/10.1242/jeb.034033
Article
PubMed
Google Scholar
Sprecher SG, Cardona A, Hartenstein V (2011) The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev Biol 358:33–43. https://doi.org/10.1016/j.ydbio.2011.07.006
CAS
Article
PubMed
Google Scholar
Stanewsky R, Kaneko M, Emery P et al (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692. https://doi.org/10.1016/S0092-8674(00)81638-4
CAS
Article
PubMed
Google Scholar
Stevenson TJ, Visser ME, Arnold W et al (2015) Disrupted seasonal biology impacts health, food security and ecosystems. Proc R Soc B 282:20151453. https://doi.org/10.1098/rspb.2015.1453
CAS
Article
PubMed
PubMed Central
Google Scholar
Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868. https://doi.org/10.1038/nature02926
CAS
Article
PubMed
Google Scholar
Tamai T, Shiga S, Goto SG (2019) Roles of the circadian clock and endocrine regulator in the photoperiodic response of the brown-winged green bug Plautia stali. Physiol Entomol 44:43–52. https://doi.org/10.1111/phen.12274
CAS
Article
Google Scholar
Tamaki S, Takemoto S, Uryu O et al (2013) Opsins are involved in nymphal photoperiodic responses in the cricket Modicogryllus siamensis. Physiol Entomol 38:163–172. https://doi.org/10.1111/phen.12015
CAS
Article
Google Scholar
Tanaka K, Murata K, Matsuura A (2015) Rapid evolution of an introduced insect Ophraella communa LeSage in new environments: temporal changes and geographical differences in photoperiodic response. Entomol Sci 18:104–112. https://doi.org/10.1111/ens.12087
Article
Google Scholar
Tauber E, Zordan M, Sandrelli F et al (2007) Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:1895–1898. https://doi.org/10.1126/science.1138412
CAS
Article
PubMed
Google Scholar
Tokuoka A, Itoh TQ, Hori S et al (2017) cryptochrome genes form an oscillatory loop independent of the per/tim loop in the circadian clockwork of the cricket Gryllus bimaculatus. Zool Lett 3:1–14. https://doi.org/10.1186/s40851-017-0066-7
Article
Google Scholar
Tomioka K, Matsumoto A (2019) The circadian system in insects: cellular, molecular, and functional organization. Adv Insect Phys 56:73–115. https://doi.org/10.1016/bs.aiip.2019.01.001
Article
Google Scholar
Tyshchenko VP (1966) Two-oscillatory model of the physiological mechanism of insect photoperiodic reaction. Zh Obshch Biol 27:209–222
CAS
PubMed
Google Scholar
Ueda H, Tamaki S, Miki T et al (2018) Cryptochrome genes mediate photoperiodic responses in the cricket Modicogryllus siamensis. Physiol Entomol 43:285–294. https://doi.org/10.1111/phen.12258
CAS
Article
Google Scholar
Urbanová V, Bazalová O, Vaněčková H, Dolezel D (2016) Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol 70:184–190. https://doi.org/10.1016/j.ibmb.2016.01.003
CAS
Article
PubMed
Google Scholar
Urbanski J, Mogi M, O’Donnell D et al (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500. https://doi.org/10.1086/664709
Article
PubMed
Google Scholar
Van Der Kooi CJ, Stavenga DG, Arikawa K et al (2021) Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu Rev Entomol 66:435–461. https://doi.org/10.1146/annurev-ento-061720-071644
CAS
Article
PubMed
Google Scholar
van Geffen KG, van Grunsven RHA, van Ruijven J et al (2014) Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth. Ecol Evol 4:2082–2089. https://doi.org/10.1002/ece3.1090
Article
PubMed
PubMed Central
Google Scholar
Vaz Nunes M, Hardie J (1993) Circadian rhythmicity is involved in photoperiodic time measurement in the aphid Megoura viciae. Experientia 49:711–713. https://doi.org/10.1007/BF01923957
Article
Google Scholar
Vaz Nunes M, Saunders D (1999) Photoperiodic time measurement in insects: a review of clock models. J Biol Rhythms 14:84–104. https://doi.org/10.1177/074873049901400202
CAS
Article
PubMed
Google Scholar
Velarde RA, Sauer CD, Walden KKO et al (2005) Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35:1367–1377. https://doi.org/10.1016/j.ibmb.2005.09.001
CAS
Article
PubMed
Google Scholar
Wang Q, Mohamed AAM, Takeda M (2013) Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism? PLoS ONE 8:1–13. https://doi.org/10.1371/journal.pone.0079381
CAS
Article
Google Scholar
Wang Q, Egi Y, Takeda M et al (2015a) Melatonin pathway transmits information to terminate pupal diapause in the Chinese oak silkmoth Antheraea pernyi and through reciprocated inhibition of dopamine pathway functions as a photoperiodic counter. Entomol Sci 18:74–84. https://doi.org/10.1111/ens.12083
Article
Google Scholar
Wang Q, Hanatani I, Takeda M et al (2015b) D2-like dopamine receptors mediate regulation of pupal diapause in Chinese oak silkmoth Antheraea pernyi. Entomol Sci 18:193–198. https://doi.org/10.1111/ens.12099
Article
Google Scholar
Westby KM, Medley KA (2020) Cold nights, city lights: artificial light at night reduces photoperiodically induced diapause in urban and rural populations of Aedes albopictus (Diptera: Culicidae). J Med Entomol 57:1694–1699. https://doi.org/10.1093/jme/tjaa139
Article
PubMed
Google Scholar
Yamada H, Yamamoto MT (2011) Association between circadian clock genes and diapause incidence in Drosophila triauraria. PLoS ONE 6:e27493. https://doi.org/10.1371/journal.pone.0027493
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamaguchi K, Goto SG (2019) Distinct physiological mechanisms induce latitudinal and sexual differences in the photoperiodic induction of diapause in a fly. J Biol Rhythms 34:293–306. https://doi.org/10.1177/0748730419841931
Article
PubMed
Google Scholar
Yoshii T, Rieger D, Förster CH (2012) Two clocks in the brain: an update of the morning and evening oscillator model in Drosophila. Prog Brain Res 199:59–82. https://doi.org/10.1016/B978-0-444-59427-3.00027-7
CAS
Article
PubMed
Google Scholar
Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24:948–955. https://doi.org/10.1093/molbev/msm011
CAS
Article
PubMed
Google Scholar
Zhu H, Yuan Q, Briscoe AD et al (2006) The two CRYs of the butterfly. Curr Biol 16:730. https://doi.org/10.1016/j.cub.2006.03.026
CAS
Article
Google Scholar
Zhu H, Sauman I, Yuan Q et al (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6:e4. https://doi.org/10.1371/journal.pbio.0060004
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu L, Tian Z, Guo S et al (2019) Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi. Insect Biochem Mol Biol 104:1–10. https://doi.org/10.1016/j.ibmb.2018.11.001
CAS
Article
PubMed
Google Scholar