Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (xTriticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380. https://doi.org/10.1186/1471-2164-12-380
CAS
Article
PubMed
PubMed Central
Google Scholar
Alm V, Busso CS, Ergon Å, Rudi H, Larsen A, Humphreys MW, Rognli OA (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Gene 123(3):369–382. https://doi.org/10.1007/s00122-011-1590-z
Article
Google Scholar
Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson C-T, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560. https://doi.org/10.1007/s00122-011-1554-3
CAS
Article
PubMed
Google Scholar
Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7(1):53–68. https://doi.org/10.1007/s10142-006-0030-7
CAS
Article
PubMed
Google Scholar
Bhusal N, Sharma P, Sareen S, Sarial AK (2018) Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol Plant 62(4):721–731. https://doi.org/10.1007/s10535-018-0811-6
CAS
Article
Google Scholar
Burbulis N, Jonytiene V, Kupriene R, Blinstrubiene A (2011) Changes in proline and soluble sugars content during cold acclimation of winter rapeseed shoots in vitro. J Food Agric Environ 9:371–374
Google Scholar
Campoli C, Matus-Cádiz MA, Pozniak CJ, Cattivelli L, Fowler DB (2009) Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genomics 282(2):141–152. https://doi.org/10.1007/s00438-009-0451-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Catala R, Salinas J (2008) Review. Regulatory mechanisms involved in cold acclimation response. Span J Agric Res 6:211–220. https://doi.org/10.5424/sjar/200806s1-390
Article
Google Scholar
Cheng L, Wang Y, Meng L, Hu X, Cui Y, Sun Y, Ali J, Xu J, Li Z (2012) Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Genome 55(1):45–55. https://doi.org/10.1139/g11-075
CAS
Article
PubMed
Google Scholar
Chodaparambil SV (2009). Genetic analysis of low-temperature tolerance in winter wheat (Doctoral dissertation, University of Saskatchewan).
Clement JMAM, van Hasselt PR (1996) Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. A comparison with other hardiness parameters. Phyton Ann Rei Bot Austria 36:29–41. https://doi.org/10.1016/b978-0-12-447602-8.50049-0
CAS
Article
Google Scholar
Czyczyło-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S (2011) Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genetic Resources 9(02):291–295. https://doi.org/10.1017/s1479262111000207
Article
Google Scholar
Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breeding 32:189–210. https://doi.org/10.1007/s11032-013-9862-8
Article
Google Scholar
Dalmannsdottir S, Jørgensen M, Rapacz M, Østrem L, Larsen A, Rødven R, Rognli OA (2017) Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Physiol Plant 160(3):266–281. https://doi.org/10.1111/ppl.12548
CAS
Article
PubMed
Google Scholar
Danyluk J, Houde M, Rassart É, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant Gramineae species. FEBS Lett 344:20–24. https://doi.org/10.1016/0014-5793(94)00353-x
CAS
Article
PubMed
Google Scholar
Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10(4):623–638. https://doi.org/10.2307/3870737
CAS
Article
PubMed
PubMed Central
Google Scholar
Del Rosso T, Giorgetti E, Cicchi S, Muniz-Miranda M, Margheri G, Giusti A, Rindi A, Ghini G, Sottini S, Marcelli A, Foggi P (2009) Surface-enhanced fluorescence and surface-enhanced Raman scattering of ultrathin layers of bichromophoric antenna systems adsorbed on silver nanoisland films. J Lumin 129(12):1955–1959. https://doi.org/10.1016/j.jlumin.2008.11.027
CAS
Article
Google Scholar
Dexter ST, Tottingham WE, Graber LF (1932) Investigations of hardiness of plants by 1008 measurement of electrical conductivity. Plant Physiol 7:63–78. https://doi.org/10.1104/pp.7.1.63
CAS
Article
PubMed
PubMed Central
Google Scholar
Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153(4):1846–1858. https://doi.org/10.1104/pp.110.159079
CAS
Article
PubMed
PubMed Central
Google Scholar
Dyda M, Wąsek I, Tyrka M, Wędzony M, Szechyńska-Hebda M (2019) Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. Physiol Plant 165(4):711–727. https://doi.org/10.1111/ppl.12760
CAS
Article
PubMed
Google Scholar
Flint HJ, Boyce BR, Brattie DJ (1967) Index of injury, a useful expression of freezing injuries to plant tissues as determined by the electric method. Can J Plant Sci 47:229–239. https://doi.org/10.4141/cjps67-043
Article
Google Scholar
Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Tόth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter)בTremois’ (spring) barley map. Theor Appl Genet 108:670–680. https://doi.org/10.1007/s00122-003-1468-9
CAS
Article
PubMed
Google Scholar
Francia E, Barabaschi D, Tondelli A, Laidò G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091. https://doi.org/10.1007/s00122-007-0634-x
CAS
Article
PubMed
Google Scholar
Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348. https://doi.org/10.1007/s00122-009-1138-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Galiba G, Quarrie SA, Sutka J, Morgounov A (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179. https://doi.org/10.1007/bf00222940
CAS
Article
PubMed
Google Scholar
Galiba G, Pecchioni N, Vágújfalvi A, Francia E, Tóth B, Barabaschi D, Stanca MA (2003) Localization of QTLs and candidate genes involved in the regulation of frost resistance in cereals. In Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution (Vol. 27, p. 31).
Galiba G, Vágújfalvi A, Li Ch, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19. https://doi.org/10.1016/j.plantsci.2008.09.016
CAS
Article
Google Scholar
Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894. https://doi.org/10.1007/s00122-010-1357-y
CAS
Article
PubMed
Google Scholar
Gołębiowska G, Wędzony M (2009) Cold-hardening of winter triticale (x Triticosecale Wittm.) results in increased resistance to pink snow mould Microdochium nivale (Fr., Samuels & Hallett) and genotype-dependent chlorophyll fluorescence modulations. Acta Physiol Plant 31:1219–1227. https://doi.org/10.1007/s11738-009-0357-5
CAS
Article
Google Scholar
González JM, Muñiz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of ×Triticosecale Wittmack. Genome 48(6):999–1009. https://doi.org/10.1139/g05-064
Article
PubMed
Google Scholar
Gupta PK, Balyan HS, Kulwal PL, Kumar N, Kumar A, Mir RR, Mohan A, Kumar J (2007) QTL analysis for some quantitative traits in bread wheat. Journal of Zhejiang University SCIENCE B pp. 807–814. https://doi.org/10.1631/jzus.2007.b0807
Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25. https://doi.org/10.1046/j.1439-0523.2002.00649.x
CAS
Article
Google Scholar
Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:25. https://doi.org/10.1093/nar/29.4.e25
Article
Google Scholar
Janeczko A, Pociecha E, Dziurka M, Jurczyk B, Libik-Konieczny M, Oklestkova J, Novak O, Pilarska M, Filek M, Rudolphi-Skórska E, Sadura I, Siwek A (2019) Changes in content of steroid regulators during cold hardening of winter wheat - steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol Biochem 139:215–228. https://doi.org/10.1016/j.plaphy.2019.03.020
CAS
Article
PubMed
Google Scholar
Kamal AHM, Kim KH, Shin KH, Choi JS, Baik BK, Tsujimoto H, Woo SH (2010) Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust J Crop Sci 4(3):196
CAS
Google Scholar
Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. https://doi.org/10.1104/pp.104.052142
CAS
Article
PubMed
PubMed Central
Google Scholar
Karbarz M, Tyrka M, Woźniak-Strzembicka A, Czajowski G, Wardyńska A, Tyrka D, Pojmaj M, Wędzony M (2020) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in triticale. Annals of Applied Biology 177(2):223–231. https://doi.org/10.1111/aab.12613
CAS
Article
Google Scholar
Knox AK, Li C, Vágújfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol Biol 67(3):257–270. https://doi.org/10.1007/s11103-008-9316-6
CAS
Article
PubMed
Google Scholar
Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121(1):21–35. https://doi.org/10.1007/s00122-010-1288-7
Article
PubMed
Google Scholar
Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56(413):887–895. https://doi.org/10.1093/jxb/eri081
Article
PubMed
Google Scholar
Koch MD, Lehman EO (1966) Resistenzeigeschatten im Gärsten und Weizensortiment Gatersleben, 7 Prüfung der Frostresistenzpflanze. DAI 14:263–282. https://doi.org/10.1007/bf02095288
Article
Google Scholar
Kocheva K, Nenova V, Karceva T, Petrov P, Georgiev GI, Börner A, Landjeva S (2014) Changes in water status, membrane stability and antioxidant capacity of wheat seedlings carrying different Rht-B1 dwarfing alleles under drought stress. J Agron Crop Sci 200(2):83–91. https://doi.org/10.1111/jac.12047
CAS
Article
Google Scholar
Kocsy G, Athmer B, Perovic D, Himmelbach A, Szücs A, Vashegyi I, Schweizer P, Galiba G, Stein N (2010) Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol Genet Genomics 283:351–363. https://doi.org/10.1007/s00438-010-0520-0
CAS
Article
PubMed
Google Scholar
Kosambi DD (1944) The estimation of map distance from recombination value. Ann Eug 12:172–175. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x
Article
Google Scholar
Kovi MR, Ergon Å (2016) Rognli OA (2016) Freezing tolerance revisited - effects of variable temperatures on gene regulation in temperate grasses and legumes. Curr Opin Plant Biol 33:140–146. https://doi.org/10.1016/j.pbi.2016.07.006
CAS
Article
PubMed
Google Scholar
Krzewska M, Czyczyło-Mysza I, Dubas E, Gołębiowska-Pikania G, Golemiec E, Stojałowski S, Chrupek M, Żur I (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (× Triticosecale Wittm.) anther culture. Plant Cell Rep 31:2099–2108. https://doi.org/10.1007/s00299-012-1320-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Krzewska M, Czyczyło-Mysza I, Dubas E, Gołębiowska-Pikania G, Żur I (2015) Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (× Triticosecale Wittm.) anther culture. Euphytica 206:263–278. https://doi.org/10.1007/s10681-015-1509-x
Article
Google Scholar
Kumar S, Sehgal SK, Kumar U, Prasad PV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186(1):265–276. https://doi.org/10.1007/s10681-012-0675-3
CAS
Article
Google Scholar
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Huener N (2013) Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci 14:12729–12763. https://doi.org/10.3390/ijms140612729
CAS
Article
PubMed
PubMed Central
Google Scholar
Law CN, Jenkins G (1970) A genetic study of cold resistance in wheat. Genet Res 15:197–208. https://doi.org/10.1017/s001667230000152x
Article
Google Scholar
Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137(1):19–28. https://doi.org/10.1046/j.1469-8137.1997.00814.x
Article
Google Scholar
Levitt J (1980) Responses of plants to environmental stresses. Chilling, freezing, and high temperature stresses. Ed. 2. Academic Press, New York, NY. https://doi.org/10.1016/b978-0-12-445501-6.50011-7
Li Y, Haseneyer G, Schön CC, Ankerst D, Korzun V, Wilde P, Bauer E (2011a) High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biology 11(1):1–14. https://doi.org/10.1186/1471-2229-11-6
CAS
Article
Google Scholar
Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E (2011b) Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biol 11(1):1–14. https://doi.org/10.1186/1471-2229-11-146
CAS
Article
Google Scholar
Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106(1):223–234. https://doi.org/10.1093/aob/mcq097
CAS
Article
PubMed
PubMed Central
Google Scholar
Lilley JM, Ludlow MM, McCouch SR, O’toole JC, (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47(9):1427–1436. https://doi.org/10.1093/jxb/47.9.1427
CAS
Article
Google Scholar
Mahfoozi S, Limin AE, Hayes PM, Hucl P, Fowler DB (2000) Influence of photoperiod response on the expression of cold hardiness in wheat and barley. Can J Plant Sci 80(4):721–724. https://doi.org/10.4141/p00-031
Article
Google Scholar
Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet Genomics 275(2):193–203. https://doi.org/10.1007/s00438-005-0076-6
CAS
Article
PubMed
Google Scholar
Morgan JM, Tan MK (1996) Chromosomal location of wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806. https://doi.org/10.1071/pp9960803
CAS
Article
Google Scholar
NDong Ch, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F, (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular Characterization and Functional Analyses. Plant Physiol 129:1368–1381. https://doi.org/10.1104/pp.001925
CAS
Article
Google Scholar
Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45(3):263–279. https://doi.org/10.1023/a:1006469128280
CAS
Article
PubMed
Google Scholar
Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910. https://doi.org/10.1007/bf00224516
CAS
Article
PubMed
Google Scholar
Plaschke J, Bӧrner A, Xie DX, Koebner RMD, Schlegel R, Gale MD (1993) RFLP mapping of genes affecting plant height and growth habit in rye. Theor Appl Genet 85:1049–1054. https://doi.org/10.1007/bf00215046
CAS
Article
PubMed
Google Scholar
Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697. https://doi.org/10.1139/g00-042
CAS
Article
PubMed
Google Scholar
Puchkov YM, Zhirov EG (1978) Breeding of common wheat varieties with a high frost resistance and genetic aspects of it. World Sci News 15:17–22
Google Scholar
Pugsley AT (1971) A genetic analysis of the spring-winter habit in wheat. Aust J Agric Res 22:21–31. https://doi.org/10.1071/ar9710021
Article
Google Scholar
Rapacz M (2007) Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica 45:409–418. https://doi.org/10.1007/s11099-007-0069-2
CAS
Article
Google Scholar
Rapacz M, Sasal M, Gut M (2011) Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of triticale (×Triticosecale Wittmack). J Agron Crop Sci 197:378–389. https://doi.org/10.1111/j.1439-037x.2011.00472.x
CAS
Article
Google Scholar
Rapacz M, Ergon Å, Höglind M, Jørgensen M, Jurczyk B, Østrem L, Rognli OA, Tronsmo AM (2014) Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Sci 225:34–44. https://doi.org/10.1016/j.plantsci.2014.05.009
CAS
Article
PubMed
Google Scholar
Rapacz M, Sasal M, Wójcik-Jagła M (2015a) Direct and indirect measurements of freezing tolerance: advantages and limitations. Acta Physiol Plant 37:157. https://doi.org/10.1007/s11738-015-1907-7
CAS
Article
Google Scholar
Rapacz M, Sasal M, Kalaji HM, Kościelniak J (2015b) Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS ONE 10(7):e0134820. https://doi.org/10.1371/journal.pone.0134820
CAS
Article
PubMed
PubMed Central
Google Scholar
Rapacz M, Jurczyk B, Sasal M (2017) Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci 256:5–15. https://doi.org/10.1016/j.plantsci.2016.11.007
CAS
Article
PubMed
Google Scholar
Rizza F, Pagani D, Stanca AM, Cattivelli L (2001) Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed 120:389–396. https://doi.org/10.1046/j.1439-0523.2001.00635.x
Article
Google Scholar
Roberts DWA (1986) Chromosomes in ‘Cadet’ and ‘Rescue’ wheats carrying loci for cold hardiness and vernalization response. Can J Genet Cytol 28:991–997. https://doi.org/10.1139/g86-137
Article
Google Scholar
Roberts DWA (1990) Identification of loci on chromosome-5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247–259. https://doi.org/10.1139/g90-039
Article
Google Scholar
Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023. https://doi.org/10.1007/s001220051185
Article
PubMed
PubMed Central
Google Scholar
Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972. https://doi.org/10.1139/g99-052
CAS
Article
PubMed
Google Scholar
Salinas J (2002) Molecular mechanism of signal transduction in cold acclimation. Frontiers in Molecular Biology (Hames B.D., Glover D.M, eds). Oxford University Press, pp. 116–139.
Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agr Hungarica 45:265–270
Google Scholar
Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114. https://doi.org/10.1007/s00122-004-1740-7
CAS
Article
PubMed
Google Scholar
Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51(2):308–321. https://doi.org/10.1111/j.1365-313X.2007.0141.x
CAS
Article
PubMed
Google Scholar
Sutka J (1981) Genetic studies of frost resistance in wheat. Theor Appl Genet 59:145–152. https://doi.org/10.1007/bf00264968
CAS
Article
PubMed
Google Scholar
Sutka J (1994) Genetic control of frost tolerance in wheat (Triticum aestivum L.). Euphytica 77:277–282. https://doi.org/10.1007/bf02262642
Article
Google Scholar
Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44. https://doi.org/10.1007/bf00042613
Article
Google Scholar
Tamura KI, Yonemaru JI (2010) Next‐generation sequencing for comparative transcriptomics of perennial ryegrass (Lolium perenne L.) and meadow fescue (Festuca pratensis Huds.) during cold acclimation. Grassland Science 56(4):230–239. https://doi.org/10.1111/j.1744-697X.2010.00199.x
CAS
Article
Google Scholar
Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7. https://doi.org/10.1104/pp.118.1.1
CAS
Article
PubMed
PubMed Central
Google Scholar
Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B in wheat. Theor Appl Genet 107:509–514. https://doi.org/10.1007/s00122-003-1275-3
CAS
Article
PubMed
Google Scholar
Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100(8):1197–1202. https://doi.org/10.1007/s001220051424
CAS
Article
Google Scholar
Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT. SSR and AFLP Markers Genome 54(5):391–401. https://doi.org/10.1139/g11-009
CAS
Article
PubMed
Google Scholar
Tyrka M, Tyrka D, Wędzony M (2015) Genetic map of triticale integrating microsatellite. DArT and SNP Markers Plos One 10(12):e0145714. https://doi.org/10.1371/journal.pone.0145714
CAS
Article
PubMed
Google Scholar
Tyrka M, Oleszczuk S, Rabiza-Swider J, Woś H, Wędzony M, Zimny J, Ponitka A, Ślusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS, Łukaszewski AJ (2018) Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Mol. Breeding 38(4):46. https://doi.org/10.1007/s11032-018-0804-3
CAS
Article
Google Scholar
Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, 33(10.1371).
Van Os H, Stam P, Visser RG, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112(1):30–40. https://doi.org/10.1007/s00122-005-0097-x
CAS
Article
PubMed
Google Scholar
Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost tolerant and sensitive genotypes. Mol Gen Genet 263:194–200. https://doi.org/10.1007/s004380051160
Article
PubMed
Google Scholar
Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67. https://doi.org/10.1007/s00438-003-0806-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Veisz O, Sutka J (1993) Ditelosomic analysis of frost resistance in wheat (cv Chinese Spring). Cereal Res Comm 21: 263–267. https://www.jstor.org/stable/23783977
Wang S, Basten CJ, Zeng BZ (2012) Windows QTL cartographer 2.5. Raleigh: Department of Statistics, North Carolina State University.
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. https://doi.org/10.1073/pnas.0401076101
CAS
Article
PubMed
PubMed Central
Google Scholar
Wędzony M (2003) Protocol for doubled haploid production in hexaploid triticale (×Triticosecale Wittm.) by crosses with maize. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic Publishers, Dordrecht, pp. 135–140. https://doi.org/10.1007/978-94-017-1293-4_21
Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, DeWald DB (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns (4, 5) P2 and constitutive expression of the stress-response pathway. Plant Physiol 138(2):686–700. https://doi.org/10.1104/pp.105.061317
CAS
Article
PubMed
PubMed Central
Google Scholar
Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8(7):749–771. https://doi.org/10.1111/j.1467-7652.2010.00536.x
CAS
Article
PubMed
Google Scholar
Yang DL, Jing RL, Chang XP, Li W (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49(5):646–654. https://doi.org/10.1111/j.1744-7909.2007.00443.x
CAS
Article
Google Scholar
Yin Q, Cui Y, Zhang G (2012) The Arabidopsis pentatricopeptide repeat protein PDM1 is associated with the intergenic sequence of S11-rpoA for rpoA monocistronic RNA cleavage. Chin Sci Bull 57:3452–3459. https://doi.org/10.1007/s11434-012-5278-9
CAS
Article
Google Scholar
Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M (2017) Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245(2):283–295. https://doi.org/10.1007/s00425-016-2605-4
CAS
Article
PubMed
Google Scholar
Zhang H, Wang Y, Bao M, Chan Z (2019) Physiological changes and DREB1s expression profiles of tall fescue in response to freezing stress. Sci Hortic 245:116–124. https://doi.org/10.1016/j.scienta.2018.09.052
CAS
Article
Google Scholar
Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland-Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127(5):1183–1197. https://doi.org/10.1007/s00122-014-2290-2
CAS
Article
PubMed
PubMed Central
Google Scholar