Ahmad S, Jan AT, Baig MH, Lee EJ, Choi I (2017) Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci 172:55–63. https://doi.org/10.1016/j.lfs.2016.12.011
CAS
Article
PubMed
Google Scholar
Amthor H, Huang R, McKinnell I, Christ B, Kambadur R, Sharma M, Patel K (2002) The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol 251:241–257. https://doi.org/10.1006/dbio.2002.0812
CAS
Article
PubMed
Google Scholar
Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol 270:19–30. https://doi.org/10.1016/j.ydbio.2004.01.046
CAS
Article
PubMed
Google Scholar
Bakkar N, Wackerhage H, Guttridge D (2005) Myostatin and NF-κB regulate skeletal myogenesis through distinct signaling pathways. Signal Transduction 5:202–210. https://doi.org/10.1002/sita.200400039
CAS
Article
Google Scholar
Bernard C, Cassar-Malek I, Le Cunff M, Dubroeucq H, Renand G, Hocquette JF (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55:5229–5237. https://doi.org/10.1021/jf063372l
CAS
Article
PubMed
Google Scholar
Camporez JP, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A 113:2212–2217. https://doi.org/10.1073/pnas.1525795113
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang F, Fang R, Wang M, Zhao X, Chang W, Zhang Z, Li N, Meng Q (2017) The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs. Transgenic Res 26:25–36. https://doi.org/10.1007/s11248-016-9985-x
CAS
Article
PubMed
Google Scholar
Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. https://doi.org/10.1152/physrev.00019.2003
Article
PubMed
Google Scholar
Chen JL, Walton KL, Winbanks CE, Murphy KT, Thomson RE, Makanji Y, Qian H, Lynch GS, Harrison CA, Gregorevic P (2014) Elevated expression of activins promotes muscle wasting and cachexia. FASEB J 28:1711–1723. https://doi.org/10.1096/fj.13-245894
CAS
Article
PubMed
Google Scholar
Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J (2000) Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 95:259–265. https://doi.org/10.1016/S0925-4773(00)00341-5
CAS
Article
PubMed
Google Scholar
Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, Kalhan SC (2011) Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol 54:915–921. https://doi.org/10.1016/j.jhep.2010.08.032
CAS
Article
PubMed
Google Scholar
Deng Z, Luo P, Lai W, Song T, Peng J, Wei HK (2017) Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Biochem Biophys Res Commun 494:278–284. https://doi.org/10.1016/j.bbrc.2017.10.040
CAS
Article
PubMed
Google Scholar
Dörpholz G, Murgai A, Jatzlau J, Horbelt D, Belverdi MP, Heroven C, Schreiber I, Wendel G, Ruschke K, Stricker S, Knaus P (2017) IRS4, a novel modulator of BMP/Smad and Akt signalling during early muscle differentiation. Sci Rep 7:8778. https://doi.org/10.1038/s41598-017-08676-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A (2015) Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res 99:86–100. https://doi.org/10.1016/j.phrs.2015.05.010
CAS
Article
PubMed
Google Scholar
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70 - a master regulator in protein degradation. FEBS Lett 591:2648–2660. https://doi.org/10.1002/1873-3468.12751
CAS
Article
PubMed
Google Scholar
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C (2011) Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 6:e21908. https://doi.org/10.1371/journal.pone.0021908
CAS
Article
PubMed
PubMed Central
Google Scholar
Formicola L, Pannérec A, Correra RM, Gayraud-Morel B, Ollitrault D, Besson V, Tajbakhsh S, Lachey J, Seehra JS, Marazzi G, Sassoon DA (2018) Inhibition of the activin receptor type-2B pathway restores regenerative capacity in satellite cell-depleted skeletal muscle. Front Physiol 9:515. https://doi.org/10.3389/fphys.2018.00515
Article
PubMed
PubMed Central
Google Scholar
Friedrichs M, Wirsdöerfer F, Flohé SB, Schneider S, Wuelling M, Vortkamp A (2011) BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. BMC Cell Biol 12:26. https://doi.org/10.1186/1471-2121-12-26
CAS
Article
PubMed
PubMed Central
Google Scholar
Goh Q, Millay DP (2017) Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife 6:e20007. https://doi.org/10.7554/eLife.20007
Article
PubMed
PubMed Central
Google Scholar
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74. https://doi.org/10.1038/ng0997-71
CAS
Article
PubMed
Google Scholar
Hocquette JF, Lehnert S, Barendse W, Cassar-Malek I, Picard B (2007) Recent advances in cattle functional genomics and their application to beef quality. Animal 1:159–173. https://doi.org/10.1017/S1751731107658042
CAS
Article
PubMed
Google Scholar
Huang Z, Chen X, Chen D (2011) Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cell Signal 23:1441–1446. https://doi.org/10.1016/j.cellsig.2011.05.003
CAS
Article
PubMed
Google Scholar
Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916. https://doi.org/10.1101/gr.7.9.910
CAS
Article
PubMed
Google Scholar
Kocamis H, McFarland DC, Killefer J (2001) Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. J Cell Physiol 186:146–152. https://doi.org/10.1002/1097-4652(200101)186:1<146::AID-JCP1014>3.0.CO;2-Q
CAS
Article
PubMed
Google Scholar
Koltai E, Bori Z, Chabert C, Dubouchaud H, Naito H, Machida S, Davies KJ, Murlasits Z, Fry AC, Boldogh I, Radak Z (2017) SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle. J Physiol 595:3361–3376. https://doi.org/10.1113/JP273774
CAS
Article
PubMed
PubMed Central
Google Scholar
Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. https://doi.org/10.1074/jbc.M204291200
CAS
Article
PubMed
Google Scholar
Lee SJ (2007) Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS One 2:e789. https://doi.org/10.1371/journal.pone.0000789
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee D, Goldberg AL (2013) SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 288:30515–30526. https://doi.org/10.1074/jbc.M113.489716
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311. https://doi.org/10.1073/pnas.151270098
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER (2010) Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24:1998–2008. https://doi.org/10.1210/me.2010-0127
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee SJ, Huynh TV, Lee YS, Sebald SM, Wilcox-Adelman SA, Iwamori N, Lepper C, Matzuk MM, Fan CM (2012) Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc Natl Acad Sci U S A 109:E2353–E2360. https://doi.org/10.1073/pnas.1206410109
Article
PubMed
PubMed Central
Google Scholar
Lee EJ, Jan AT, Baig MH, Ashraf JM, Nahm SS, Kim YW, Park SY, Choi I (2016) Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J 30:2708–2719. https://doi.org/10.1096/fj.201500133R
CAS
Article
PubMed
Google Scholar
Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL (2007) Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 7:95. https://doi.org/10.1186/1471-213X-7-95
CAS
Article
PubMed
PubMed Central
Google Scholar
Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, MacLaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC (2015) Impact of periconceptional and preimplantation undernutrition on factors regulating myogenesis and protein synthesis in muscle of singleton and twin fetal sheep. Physiol Rep 3:e12495. https://doi.org/10.14814/phy2.12495
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136:354–374. https://doi.org/10.1016/j.pharmthera.2012.08.014
CAS
Article
PubMed
Google Scholar
Ma Z, Zhong Z, Zheng Z, Shi XM, Zhang W (2014) Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro. PLoS One 9:e105528. https://doi.org/10.1371/journal.pone.0105528
CAS
Article
PubMed
PubMed Central
Google Scholar
Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43:168–175. https://doi.org/10.1016/j.ymeth.2007.06.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kühl M, Behrens J, von der Mark K, Starzinski-Powitz A, Wixler V (2002) The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 159:113–122. https://doi.org/10.1083/jcb.200202075
CAS
Article
PubMed
PubMed Central
Google Scholar
Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363. https://doi.org/10.1038/374360a0
CAS
Article
PubMed
Google Scholar
McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147. https://doi.org/10.1083/jcb.200207056
CAS
Article
PubMed
PubMed Central
Google Scholar
McFarland DC, Velleman SG, Pesall JE, Liu C (2007) The role of myostatin in chicken (Gallus domesticus) myogenic satellite cell proliferation and differentiation. Gen Comp Endocrinol 151:351–357. https://doi.org/10.1016/j.ygcen.2007.02.006
CAS
Article
PubMed
Google Scholar
McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514. https://doi.org/10.1002/jcp.20757
CAS
Article
PubMed
Google Scholar
Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem 285:29336–29347. https://doi.org/10.1074/jbc.M110.101147
CAS
Article
PubMed
PubMed Central
Google Scholar
Motyl T, Sadkowski T, Jank M, Wicik Z (2009) Miogeneza- rozwój mięśni szkieletowych. In: Zwierzchowski L, Świtoński M (eds) Genomika Bydła i Świni- Wybrane zagadnienia. Instytut Genetyki i Hodowli Zwierząt, Polska Akademia Nauk, Jastrzębiec, Rozdział 9.1, pp 250–261 [in Polish]
Google Scholar
Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS (2011) BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ 18:222–234. https://doi.org/10.1038/cdd.2010.95
CAS
Article
PubMed
Google Scholar
Pallafacchina G, Blaauw B, Schiaffino S (2013) Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis 23:S12–S18. https://doi.org/10.1016/j.numecd.2012.02.002
CAS
Article
PubMed
Google Scholar
Pérez R, Tupac-Yupanqui I, Dunner S (2008) Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol 9:79. https://doi.org/10.1186/1471-2199-9-79
CAS
Article
PubMed
PubMed Central
Google Scholar
Periyalwar P, Dasarathy S (2012) Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 16:95–131. https://doi.org/10.1016/j.cld.2011.12.009
Article
PubMed
PubMed Central
Google Scholar
Pires BC, Tholon P, Buzanskas ME, Sbardella AP, Rosa JO, Campos da Silva LO, de Almeida Torres Júnior RA, Munari DP, de Alencar MM (2017) Genetic analyses on bodyweight, reproductive, and carcass traits in composite beef cattle. Anim Prod Sci 57:415–421. https://doi.org/10.1071/AN15458
Article
Google Scholar
Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71:4361–4371. https://doi.org/10.1007/s00018-014-1689-x
CAS
Article
PubMed
Google Scholar
Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183. https://doi.org/10.1016/j.stem.2014.12.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Sadkowski T, Jank M, Oprzadek J, Motyl T (2006) Age-dependent changes in bovine skeletal muscle transcriptomic profile. J Physiol Pharmacol 57(Suppl 7):95–110
PubMed
Google Scholar
Sadkowski T, Jank M, Zwierzchowski L, Siadkowska E, Oprzadek J, Motyl T (2008) Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nucleotide polymorphism in the myostatin gene 5′-flanking region. J Appl Genet 49:237–250. https://doi.org/10.1007/BF03195620
Article
PubMed
Google Scholar
Sadkowski T, Jank M, Zwierzchowski L, Oprzadek J, Motyl T (2009a) Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls. J Appl Genet 50:109–123. https://doi.org/10.1007/BF03195662
CAS
Article
PubMed
Google Scholar
Sadkowski T, Jank M, Zwierzchowski L, Oprzadek J, Motyl T (2009b) Transcriptomic index of skeletal muscle of beef breeds bulls. J Physiol Pharmacol 60(Suppl 1):15–28
PubMed
Google Scholar
Sadkowski T, Ciecierska A, Majewska A, Oprządek J, Dasiewicz K, Ollik M, Wicik Z, Motyl T (2014) Transcriptional background of beef marbling - novel genes implicated in intramuscular fat deposition. Meat Sci 97:32–41. https://doi.org/10.1016/j.meatsci.2013.12.017
CAS
Article
PubMed
Google Scholar
Sadkowski T, Ciecierska A, Oprządek J, Balcerek E (2018) Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. BMC Genomics 19:109. https://doi.org/10.1186/s12864-018-4492-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296:C1248–C1257. https://doi.org/10.1152/ajpcell.00104.2009
CAS
Article
PubMed
Google Scholar
Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25:464–471. https://doi.org/10.1016/j.tem.2014.06.002
CAS
Article
PubMed
Google Scholar
Sato F, Kurokawa M, Yamauchi N, Hattori MA (2006) Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am J Physiol Cell Physiol 291:C538–C545. https://doi.org/10.1152/ajpcell.00543.2005
CAS
Article
PubMed
Google Scholar
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73
CAS
Article
PubMed
Google Scholar
Shen C, Zhou J, Wang X, Yu XY, Liang C, Liu B, Pan X, Zhao Q, Song JL, Wang J, Bao M, Wu C, Li Y, Song YH (2017) Angiotensin-II-induced muscle wasting is mediated by 25-hydroxycholesterol via GSK3β signaling pathway. EBioMedicine 16:238–250. https://doi.org/10.1016/j.ebiom.2017.01.040
Article
PubMed
PubMed Central
Google Scholar
Stricher F, Macri C, Ruff M, Muller S (2013) HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9:1937–1954. https://doi.org/10.4161/auto.26448
CAS
Article
PubMed
Google Scholar
Suryawan A, Frank JW, Nguyen HV, Davis TA (2006) Expression of the TGF-beta family of ligands is developmentally regulated in skeletal muscle of neonatal rats. Pediatr Res 59:175–179. https://doi.org/10.1203/01.pdr.0000196718.47935.6e
CAS
Article
PubMed
Google Scholar
Szcześniak KA, Ciecierska A, Ostaszewski P, Sadkowski T (2016) Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. Genes Nutr 11:5. https://doi.org/10.1186/s12263-016-0523-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Tando T, Hirayama A, Furukawa M, Sato Y, Kobayashi T, Funayama A, Kanaji A, Hao W, Watanabe R, Morita M, Oike T, Miyamoto K, Soga T, Nomura M, Yoshimura A, Tomita M, Matsumoto M, Nakamura M, Toyama Y, Miyamoto T (2016) Smad2/3 proteins are required for immobilization-induced skeletal muscle atrophy. J Biol Chem 291:12184–12194. https://doi.org/10.1074/jbc.M115.680579
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang AH, Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33:2782–2797. https://doi.org/10.15252/embj.201488278
CAS
Article
PubMed
PubMed Central
Google Scholar
Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280:E221–E228. https://doi.org/10.1152/ajpendo.2001.280.2.E221
CAS
Article
PubMed
Google Scholar
Valek L, Heidler J, Scheving R, Wittig I, Tegeder I (2019) Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol 20:217–235. https://doi.org/10.1016/j.redox.2018.10.002
CAS
Article
PubMed
Google Scholar
van der Velden JL, Schols AM, Willems J, Kelders MC, Langen RC (2008) Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J Biol Chem 283:358–366. https://doi.org/10.1074/jbc.M707812200
CAS
Article
PubMed
Google Scholar
Verhees KJ, Pansters NA, Baarsma HA, Remels AH, Haegens A, de Theije CC, Schols AM, Gosens R, Langen RC (2013) Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res 14:117. https://doi.org/10.1186/1465-9921-14-117
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang YH, Byrne KA, Reverter A, Harper GS, Taniguchi M, McWilliam SM, Mannen H, Oyama K, Lehnert SA (2005) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 16:201–210. https://doi.org/10.1007/s00335-004-2419-8
CAS
Article
PubMed
Google Scholar
Wang H, Li TL, Hsia S, Su IL, Chan YL, Wu CJ (2015) Skeletal muscle atrophy is attenuated in tumor-bearing mice under chemotherapy by treatment with fish oil and selenium. Oncotarget 6:7758–7773. https://doi.org/10.18632/oncotarget.3483
Article
PubMed
PubMed Central
Google Scholar
Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, Nelson D, Witte D, Woodgett J, Timchenko NA, Timchenko L (2018) Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J 32:2073–2085. https://doi.org/10.1096/fj.201700700R
CAS
Article
PubMed
PubMed Central
Google Scholar
Welle S, Bhatt K, Pinkert CA (2006) Myofibrillar protein synthesis in myostatin-deficient mice. Am J Physiol Endocrinol Metab 290:E409–E415. https://doi.org/10.1152/ajpendo.00433.2005
CAS
Article
PubMed
Google Scholar
Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296:E567–E572. https://doi.org/10.1152/ajpendo.90862.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
Wicik Z, Sadkowski T, Jank M, Motyl T (2011) The transcriptomic signature of myostatin inhibitory influence on the differentiation of mouse C2C12 myoblasts. Pol J Vet Sci 14:643–652. https://doi.org/10.2478/v10181-011-0095-7
CAS
Article
PubMed
Google Scholar
Yu SL, Chung HJ, Sang BC, Park CS, Lee JH, Yoon DH, Lee SH, Choi KD (2007) Identification of differentially expressed genes in distinct skeletal muscles in cattle using cDNA microarray. Anim Biotechnol 18:275–285. https://doi.org/10.1080/10495390701413391
CAS
Article
PubMed
Google Scholar
Zhao C, Tian F, Yu Y, Luo J, Mitra A, Zhan F, Hou Y, Liu G, Zan L, Updike MS, Song J (2012) Functional genomic analysis of variation on beef tenderness induced by acute stress in angus cattle. Comp Funct Genomics 2012:756284. https://doi.org/10.1155/2012/756284
CAS
Article
PubMed
PubMed Central
Google Scholar
Zheng H, Qiao C, Tang R, Li J, Bulaklak K, Huang Z, Zhao C, Dai Y, Li J, Xiao X (2017) Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med 49:e377. https://doi.org/10.1038/emm.2017.135
CAS
Article
PubMed
PubMed Central
Google Scholar