Skip to main content
Log in

Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre-Hernández J, Milne BS, Queen C et al (2009) Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs. BMC Vet Res 5:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appiah-Kubi K, Lan T, Wang Y et al (2017) Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies. Crit Rev Oncol Hematol 109:20–34

    Article  PubMed  Google Scholar 

  • Ayl RD, Couto CG, Hammer AS et al (1992) Correlation of DNA ploidy to tumor histologic grade, clinical variables, and survival in dogs with mast cell tumors. Vet Pathol 29:386–390

    Article  CAS  PubMed  Google Scholar 

  • Becker SED, Thomas R, Trifonov VA, Wayne RK, Graphodatsky AS et al (2011) Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosom Res 19:685–708

    Article  CAS  Google Scholar 

  • Blackwood L, Murphy S, Buracco P et al (2012) European consensus document on mast cell tumours in dogs and cats. Vet Comp Oncol 10:e1–e29

    Article  CAS  PubMed  Google Scholar 

  • Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans--man and his best friend share more than companionship. Chromosom Res 16:145–154

    Article  CAS  Google Scholar 

  • Breen M, Bullerdiek J, Langford CF (1999a) The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosom Res 7:401–406

    Article  CAS  Google Scholar 

  • Breen M, Thomas R, Binns MM et al (1999b) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61:145–155

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Ghosh J, Kapur R (2015) Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder. Oncotarget 6:18250–18264

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz Cardona JA, Milner R, Alleman AR et al (2011) BCR-ABL translocation in a dog with chronic monocytic leukemia. Vet Clin Pathol 40:40–47

    Article  PubMed  Google Scholar 

  • Devitt JJ, Maranon DG, Ehrhart EJ et al (2009) Correlations between numerical chromosomal aberrations in the tumor and peripheral blood in canine lymphoma. Cytogenet Genome Res 124:12–18

    Article  CAS  PubMed  Google Scholar 

  • Dobson JM, Samuel S, Milstein H et al (2002) Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract 43:240–246

    Article  CAS  PubMed  Google Scholar 

  • Downing S, Chien MB, Kass PH et al (2002) Prevalence and importance of internal tandem duplications in exons 11 and 12 of c-kit in mast cell tumors of dogs. Am J Vet Res 63:1718–1723

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo JF, Culver S, Behling-Kelly E et al (2012) Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog. Vet Clin Pathol 41:362–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Montero AC, Jara-Acevedo M, Teodosio C et al (2006) KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood 108:2366–2372

    Article  CAS  PubMed  Google Scholar 

  • Giantin M, Vascellari M, Morello EM et al (2012) c-kit messenger RNA and protein expression and mutations in canine cutaneous mast cell tumors: correlations with post-surgical prognosis. J Vet Diagn Investig 24:116–126

    Article  Google Scholar 

  • Gil da Costa RM (2015) c-kit as a prognostic and therapeutic marker in canine cutaneous mast cell tumours: from laboratory to clinic. Vet J 205:5–10

    Article  CAS  PubMed  Google Scholar 

  • Grüntzig K, Graf R, Boo G et al (2016) Swiss Canine Cancer Registry 1955-2008: occurrence of the most common tumour diagnoses and influence of age, breed, body size, sex and neutering status on tumour development. J Comp Pathol 155:156–170

    Article  PubMed  Google Scholar 

  • Gupta R, Bain BJ, Knight CL (2002) Cytogenetic and molecular genetic abnormalities in systemic mastocytosis. Acta Haematol 107:123–128

    Article  CAS  PubMed  Google Scholar 

  • Hahn KA, Richardson RC, Hahn EA, Chrisman CL (1994) Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 31:528–540

    Article  CAS  PubMed  Google Scholar 

  • ISCN (2016). An international system for human cytogenetic nomenclature (2016) McGowan-Jordan J, Simons A, Schmid M (Eds.), Karger, Reprint of Cytogenet Genome Res Vol. 149, No. 1–2

  • Jark PC, Mundin DBP, de Carvalho M et al (2017) Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors. Res Vet Sci 111:26–30

    Article  PubMed  Google Scholar 

  • Kiupel M, Webster JD, Bailey KL et al (2011) Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behavior. Vet Pathol 48:147–155

    Article  CAS  PubMed  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosom Res 10:571–577

    Article  CAS  Google Scholar 

  • Letard S, Yang Y, Hanssens K et al (2008) Gain-of-function mutations in the extracellular domain of KIT are common in canine mast cell tumors. Mol Cancer Res 6:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Lin T-Y, Thomas R, Tsai P-C et al (2009) Generation and characterization of novel canine malignant mast cell line CL1. Vet Immunol Immunopathol 127:114–124

    Article  CAS  PubMed  Google Scholar 

  • Lishner M, Confino-Cohen R, Mekori YA et al (1996) Trisomies 9 and 8 detected by fluorescence in situ hybridization in patients with systemic mastocytosis. J Allergy Clin Immunol 98:199–204

    Article  CAS  PubMed  Google Scholar 

  • London CA, Galli SJ, Yuuki T et al (1999) Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit. Exp Hematol 27:689–697

    Article  CAS  PubMed  Google Scholar 

  • Marconato L, Zorzan E, Giantin M et al (2014) Concordance of c-kit mutational status in matched primary and metastatic cutaneous canine mast cell tumors at baseline. J Vet Intern Med 28:547–553

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Kramberger-Kaplan E, Loupal G, Schleger W (1992) Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 53:205–211

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Reifinger M, Brem G et al (1999) Cytogenetic, ras, and p53: studies in cases of canine neoplasms (hemangiopericytoma, mastocytoma, histiocytoma, chloroma). J Hered 90:124–128

    Article  CAS  PubMed  Google Scholar 

  • Mertens F, Johansson B, Fioretos T, Mitelman F (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15:371–381

    Article  CAS  Google Scholar 

  • Milne BS, Hoather T, O’Brien PCM et al (2004) Karyotype of canine soft tissue sarcomas: a multi-colour, multi-species approach to canine chromosome painting. Chromosom Res 12:825–835

    Article  CAS  Google Scholar 

  • Mitelman F (2000) Recurrent chromosome aberrations in cancer. Mutat Res 462:247–253

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mandahl N, Mertens F (1997) Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  CAS  Google Scholar 

  • Mochizuki H, Thomas R, Moroff S, Breen M (2017) Genomic profiling of canine mast cell tumors identifies DNA copy number aberrations associated with KIT mutations and high histological grade. Chromosom Res 25(2):129–143

    Article  CAS  Google Scholar 

  • Myllykangas S, Himberg J, Böhling T et al (2006) DNA copy number amplification profiling of human neoplasms. Oncogene 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  • Naumann N, Jawhar M, Schwaab J et al (2018) Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer 57:252–259

    Article  CAS  PubMed  Google Scholar 

  • Patnaik AK, Ehler WJ, MacEwen EG (1984) Canine cutaneous mast cell tumor: morphologic grading and survival time in 83 dogs. Vet Pathol 21:469–474

    Article  CAS  PubMed  Google Scholar 

  • Poorman K, Borst L, Moroff S et al (2015) Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosom Res 23:171–186

    Article  CAS  Google Scholar 

  • Preziosi R, Sarli G, Paltrinieri M (2007) Multivariate survival analysis of histological parameters and clinical presentation in canine cutaneous mast cell tumours. Vet Res Commun 31:287–296

    Article  CAS  PubMed  Google Scholar 

  • Reimann-Berg N, Willenbrock S, Murua Escobar H et al (2011) Two new cases of polysomy 13 in canine prostate cancer. Cytogenet Genome Res 132:16–21

    Article  CAS  PubMed  Google Scholar 

  • Reimann-Berg N, Murua Escobar H, Nolte I (2012) Relevance of chromosome 13 aberrations in canine tumours. Tierärztl Prax Ausg K KleintiereHeimtiere 40:267–270

    Article  CAS  Google Scholar 

  • Sabattini S, Scarpa F, Berlato D, Bettini G (2015) Histologic grading of canine mast cell tumor: is 2 better than 3? Vet Pathol 52:70–73

    Article  CAS  PubMed  Google Scholar 

  • Sargan DR, Milne BS, Hernandez JA et al (2005) Chromosome rearrangements in canine fibrosarcomas. J Hered 96:766–773

    Article  CAS  PubMed  Google Scholar 

  • Stone DM, Jacky PB, Prieur DJ (1991) Cytogenetic evaluation of four canine mast cell tumors. Cancer Genet Cytogenet 53:105–112

    Article  CAS  PubMed  Google Scholar 

  • Switoński M, Reimann N, Bosma AA et al (1996) Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosom Res 4:306–309

    Article  Google Scholar 

  • Takeuchi Y, Fujino Y, Watanabe M et al (2013) Validation of the prognostic value of histopathological grading or c-kit mutation in canine cutaneous mast cell tumours: a retrospective cohort study. Vet J 196:492–498

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Bridge W, Benke K, Breen M (2003a) Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet Genome Res 102:249–253

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Smith KC, Ostrander EA et al (2003b) Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster JD, Yuzbasiyan-Gurkan V, Kaneene JB et al (2006) The role of c-KIT in tumorigenesis: evaluation in canine cutaneous mast cell tumors. Neoplasia 8:104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welle MM, Bley CR, Howard J, Rüfenacht S (2008) Canine mast cell tumours: a review of the pathogenesis, clinical features, pathology and treatment. Vet Dermatol 19:321–339

    Article  PubMed  Google Scholar 

  • Winkler S, Murua Escobar H, Reimann-Berg N et al (2005) Cytogenetic investigations in four canine lymphomas. Anticancer Res 25:3995–3998

    PubMed  Google Scholar 

  • Winkler S, Reimann-Berg N, Murua Escobar H et al (2006) Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 169:154–158

    Article  CAS  PubMed  Google Scholar 

  • Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the dog owners and to veterinarians J. Pfeifr, J. Bezdek and T. Fiala who collected the blood and tumour samples at the Veterinary Clinic Animed, Brno, at the Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, and at Veterinary Hospital AA-Vet, Prague, Czech Republic.

Funding

This work was supported by the grant 16-26655S from the Czech Science Foundation (GA CR), by the Ministry of Agriculture (RO 0518) and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miluse Vozdova.

Ethics declarations

The study complies with the current laws of the Czech Republic. All applicable international, national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies using human subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Maciej Szydlowski

Electronic supplementary material

Supplemental Table S1

Combinations of the red fox whole chromosome painting probes used for the screening of canine MCTs and their orthology with canine chromosomes (according to Becker et al. 2011). The vulpine probes were labelled with Spectrum Green (SG), Spectrum Orange (SO), Biotin (Bio) and Digoxigenin (Dig). (DOC 43 kb)

Supplemental Table S2

BAC probes used for the interphase FISH analysis of cancer-related genes and their localisation on canine chromosomes. (DOC 34 kb)

Supplemental Figure 1

Complex rearrangement t(X;4;5) analysed by FISH using BAC probes for TP53 and FAT2 genes (a) and the locus-specific probe for the PDGFRB gene (b). (DOC 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozdova, M., Kubickova, S., Cernohorska, H. et al. Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours. J Appl Genetics 60, 63–70 (2019). https://doi.org/10.1007/s13353-018-0471-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-018-0471-4

Keywords

Navigation