Skip to main content
Log in

The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations

  • Human Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aklillu E, Leong C, Loebstein R, Halkin H, Gak E (2008) VKORC1 Asp36Tyr warfarin resistance marker is common in Ethiopian individuals. Blood 111(7):3903–3904

    Article  PubMed  CAS  Google Scholar 

  • Atzmon G, Hao L, Pe’er I, Velez C, Pearlman A, Palamara PF, Morrow B, Friedman E, Oddoux C, Burns E, Ostrer H (2010) Abraham’s children in the genome era: major Jewish diaspora populations comprise distinct genetic clusters with shared Middle Eastern Ancestry. Am J Hum Genet 86(6):850–859

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, Rootsi S, Chaubey G, Kutuev I, Yudkovsky G, Khusnutdinova EK, Balanovsky O, Semino O, Pereira L, Comas D, Gurwitz D, Bonne-Tamir B, Parfitt T, Hammer MF, Skorecki K, Villems R (2010) The genome-wide structure of the Jewish people. Nature 466(7303):238–242

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649

    Article  PubMed  Google Scholar 

  • D’Andrea G, D’Ambrosio R, Margaglione M (2008) Oral anticoagulants: pharmacogenetics relationship between genetic and non-genetic factors. Blood Rev 22(3):127–140

    Article  PubMed  Google Scholar 

  • Dang MT, Hambleton J, Kayser SR (2005) The influence of ethnicity on warfarin dosage requirement. Ann Pharmacother 39(6):1008–1012

    Article  PubMed  CAS  Google Scholar 

  • El Rouby S, Mestres CA, LaDuca FM, Zucker ML (2004) Racial and ethnic differences in warfarin response. J Heart Valve Dis 13(1):15–21

    PubMed  Google Scholar 

  • Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, Muller CR, Wienker TF, Oldenburg J (2005) VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 94(4):773–779

    PubMed  Google Scholar 

  • Gong X, Gutala R, Jaiswal AK (2008) Quinone oxidoreductases and vitamin K metabolism. Vitam Horm 78:85–101. doi:10.1016/S0083-6729(07)00005-2

    Article  PubMed  CAS  Google Scholar 

  • Harrington DJ, Siddiq S, Allford SL, Shearer MJ, Mumford AD (2011) More on: endoplasmic reticulum loop VKORC1 substitutions cause warfarin resistance but do not diminish gamma-carboxylation of the vitamin K-dependent coagulation factors. J Thromb Haemost 9(5):1093–1095. doi:10.1111/j.1538-7836.2011.04249.x

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818

    Article  PubMed  CAS  Google Scholar 

  • Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764. doi:10.1056/NEJMoa0809329

    Article  PubMed  CAS  Google Scholar 

  • Korostishevsky M, Kremer I, Kaganovich M, Cholostoy A, Murad I, Muhaheed M, Bannoura I, Rietschel M, Dobrusin M, Bening-Abu-Shach U, Belmaker RH, Maier W, Ebstein RP, Navon R (2006) Transmission disequilibrium and haplotype analyses of the G72/G30 locus: suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. Am J Med Genet B Neuropsychiatr Genet 141B(1):91–95. doi:10.1002/ajmg.b.30212

    Article  PubMed  CAS  Google Scholar 

  • Kurnik D, Qasim H, Sominsky S, Lubetsky A, Markovits N, Li C, Stein CM, Halkin H, Gak E, Loebstein R (2012) Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction. Thromb Haemost 108(4):781–788. doi:10.1160/TH12-03-0151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544. doi:10.1038/nature02254

    Article  PubMed  CAS  Google Scholar 

  • Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, Acton RT (2008a) Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics 9(5):511–526. doi:10.2217/14622416.9.5.511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Limdi NA, Beasley TM, Crowley MR, Goldstein JA, Rieder MJ, Flockhart DA, Arnett DK, Acton RT, Liu N (2008b) VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics 9(10):1445–1458. doi:10.2217/14622416.9.10.1445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ (2010) Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115(18):3827–3834. doi:10.1182/blood-2009-12-255992

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G, Amariglio N, Cohen Y, Ken-Dror G, Almog S, Gak E (2007) A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109(6):2477–2480

    Article  PubMed  CAS  Google Scholar 

  • Matimba A, Oluka MN, Ebeshi BU, Sayi J, Bolaji OO, Guantai AN, Masimirembwa CM (2008) Establishment of a biobank and pharmacogenetics database of African populations. Eur J Hum Genet 16(7):780–783. doi:10.1038/ejhg.2008.49

    Article  PubMed  CAS  Google Scholar 

  • Mitchell C, Gregersen N, Krause A (2011) Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics 12(7):953–963. doi:10.2217/pgs.11.36

    Article  PubMed  CAS  Google Scholar 

  • Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH (2007) Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics 8(11):1535–1544. doi:10.2217/14622416.8.11.1535

    Article  PubMed  CAS  Google Scholar 

  • Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L, Atzmon G, Burns E, Ostrer H, Price AL, Reich D (2011) The history of African gene flow into Southern Europeans, Levantines, and Jews. PLoS Genet 7(4):e1001373. doi:10.1371/journal.pgen.1001373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ostrer H (2001) A genetic profile of contemporary Jewish populations. Nat Rev Genet 2(11):891–898

    Article  PubMed  CAS  Google Scholar 

  • Pavani A, Naushad SM, Rupasree Y, Kumar TR, Malempati AR, Pinjala RK, Mishra RC, Kutala VK (2012) Optimization of warfarin dose by population-specific pharmacogenomic algorithm. Pharmacogenomics J 12(4):306–311. doi:10.1038/tpj.2011.4

    Article  PubMed  CAS  Google Scholar 

  • Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–2293

    Article  PubMed  CAS  Google Scholar 

  • Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427(6974):537–541. doi:10.1038/nature02214

    Article  PubMed  CAS  Google Scholar 

  • Rost S, Fregin A, Hunerberg M, Bevans CG, Muller CR, Oldenburg J (2005) Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Thromb Haemost 94(4):780–786

    PubMed  Google Scholar 

  • Schelleman H, Chen Z, Kealey C, Whitehead AS, Christie J, Price M, Brensinger CM, Newcomb CW, Thorn CF, Samaha FF, Kimmel SE (2007) Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 81(5):742–747. doi:10.1038/sj.clpt.6100144

    Article  PubMed  CAS  Google Scholar 

  • Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Scott SA, Edelmann L, Kornreich R, Desnick RJ (2008) Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 82(2):495–500

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shahin MH, Cavallari LH, Perera MA, Khalifa SI, Misher A, Langaee T, Patel S, Perry K, Meltzer DO, McLeod HL, Johnson JA (2013) VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians. Thromb Haemost 109(6):1045–1050. doi:10.1160/TH12-10-0789

    Article  PubMed  CAS  Google Scholar 

  • Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. Thromb Haemost 100(4):530–547

    PubMed  CAS  Google Scholar 

  • Shiloh Y (2008) The land of Cush and Ethiopian Jewry. Available: http://www.biu.ac.il/JH/Parasha/eng/noah/shil.html. Accessed 2011 Jan 6

  • Shuen AY, Wong BY, Fu L, Selby R, Cole DE (2012) Evaluation of the warfarin-resistance polymorphism, VKORC1 Asp36Tyr, and its effect on dosage algorithms in a genetically heterogeneous anticoagulant clinic. Clin Biochem 45(6):397–401. doi:10.1016/j.clinbiochem.2012.01.002

    Article  PubMed  CAS  Google Scholar 

  • Skorecki K, Selig S, Blazer S, Bradman R, Bradman N, Waburton PJ, Ismajlowicz M, Hammer MF (1997) Y chromosomes of Jewish priests. Nature 385(6611):32. doi:10.1038/385032a0

    Article  PubMed  CAS  Google Scholar 

  • Tabachnikov S, Aklillu E, Masimirembwa C, Maimbo M, Ken-Dror G, Dvoskin I, Cohen Y, Rechavi G, Amariglio N, Loebstein R, Kurnik D, Halkin H, Gak E (2010) Tracing of the Jewish-Ashkenazi mutation to ancient African populations. Abstract of Frontiers in Genetics VI The Genetic Society of Israel Annual Meeting 2010 Weizmann Institute of Science, Israel, p 112

  • Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, Pengo V, Barban M, Padrini R, Ieiri I, Otsubo K, Kashima T, Kimura S, Kijima S, Echizen H (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Veenstra DL, You JH, Rieder MJ, Farin FM, Wilkerson HW, Blough DK, Cheng G, Rettie AE (2005) Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 15(10):687–691

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, Holm L, McGinnis R, Rane A, Deloukas P (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792. doi:10.1182/blood-2008-04-149070

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Watzka M, Geisen C, Bevans CG, Sittinger K, Spohn G, Rost S, Seifried E, Muller CR, Oldenburg J (2011) Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J Thromb Haemost 9(1):109–118. doi:10.1111/j.1538-7836.2010.04095.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Collen Masimirembwa and his group for providing DNA samples from the African Biobank.

Funding

This study was supported by the Israeli Ministry of Industry Nofar program #39410. This study was performed in partial fulfilment of the requirements for Ms Sominsky’s M.Sc. thesis, submitted to the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel.

Conflict of interest

Dr. Gak holds a 40 % stake in patent PCT application no. WO2007IL00405, filed in March 2007, entitled “Methods and kits for determining predisposition to warfarin resistance”, which includes the VKORC1 D36Y variant. None of the other authors have any conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Gak.

Additional information

Sophia Sominsky and Michael Korostishevsky are equally contributing authors

Appendix: Mutation frequency ratio and population admixture

Appendix: Mutation frequency ratio and population admixture

Let A and B be two populations, m A and m B the admixture portions (per generation) in each of the populations, respectively. Let p A(t) and p B(t) be population frequencies of mutation (a SNP allele) in generation t. Then these two frequencies will be gradually equalized from generation to generation according to the following formulae.

$$ \begin{array}{l}{p}_A\left(t+1\right)={p}_A(t)\ast \left(1-{m}_A\right)+{p}_B(t)\ast {m}_A\hfill \\ {}{p}_B\left(t+1\right)={p}_B(t)\ast \left(1-{m}_B\right)+{p}_A(t)\ast {m}_B\hfill \end{array} $$
(A1)

As a simple consequence that can be deduced from (A1) by induction, it follows that after t generations of admixture the frequencies equal:

$$ \begin{array}{l}{p}_A(t)={p}_A(0)\ast \left(1-{m}_A\ast \Delta (t)\right)+{p}_B(0)\ast {m}_A\ast \Delta (t)\hfill \\ {}{p}_B(t)={p}_B(0)\ast \left(1-{m}_B\ast \Delta (t)\right)+{p}_A(0)\ast {m}_B\ast \Delta (t)\hfill \end{array}, $$
(A2)

where \( \Delta (t)=\frac{1-{\left(1-{m}_A-{m}_B\right)}^t}{m_A+{m}_B} \), and p A (0) and p B (0) are the initial mutation frequencies in two populations.

When the mutation is absent in population A in the initial generation, p A (0) = 0, the ratio between frequencies is not dependent on the initial mutation frequency in population B:

$$ \raisebox{1ex}{${p}_A(t)$}\!\left/ \!\raisebox{-1ex}{${p}_B(t)$}\right.=\frac{m_A-{m}_A{\left(1-{m}_A-{m}_A\right)}^t}{m_A+{m}_B{\left(1-{m}_A-{m}_A\right)}^t}. $$
(A3)

In the special case of symmetric admixture, m A  = m B  = m, the formula is reduced to:

$$ \raisebox{1ex}{${p}_A(t)$}\!\left/ \!\raisebox{-1ex}{${p}_B(t)$}\right.=\frac{1-{\left(1-2\ast m\right)}^t}{1+{\left(1-2\ast m\right)}^t}. $$
(A4)

Dependence of this ratio on generation number and admixture level is demonstrated in Fig. 2.

Fig. 2
figure 2

Dependence of frequency ratio on population admixture time. The figure shows the expected mutation frequency ratio as a function of admixture time between two populations under different admixture levels ranging from 0.001 to 0.01. The unit of the time scale (X-axis) corresponds to 25 years per generation

The formulae above describe the average dynamics of mutation frequencies in two populations, the ratio deviation caused by genetic drift was not estimated in this simple model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sominsky, S., Korostishevsky, M., Kurnik, D. et al. The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations. J Appl Genetics 55, 163–171 (2014). https://doi.org/10.1007/s13353-013-0189-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0189-2

Keywords

Navigation