Skip to main content
Log in

Quantitative and specific detection of the biocontrol agent, Serratia plymuthica, in plant extracts using a real-time TaqMan® assay

  • Microbial Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

A Serratia plymuthica-specific TaqMan® assay was designed based on the consensus nucleotide sequence from the 3′- end of the luxS gene present in all S. plymuthica strains tested. The specificity of the assay was demonstrated by testing 21 Serratia spp. strains and 30 isolates belonging to various species that can potentially coexist with S. plymuthica in the same environment. Positive reactions in the TaqMan® assay were observed only for S. plymuthica isolates and not for other bacteria. The TaqMan® assay could detect down to 1.95 ng of S. plymuthica DNA, down to 5 bacterial cells per reaction (100 cfu ml−1) in vitro, down to 50 bacterial cells per reaction (1,000 cfu ml−1) in spiked potato root extracts and down to 5 bacterial cells per reaction (100 cfu ml−1) in spiked potato haulm extracts. We used this assay to quantify S. plymuthica A30 cells in potato and tomato haulms and roots grown from S. plymuthica A30-inoculated potato seed tubers and tomato seeds. The results were comparable with the spread-plating of plant extracts on a newly developed S. plymuthica A30 selective medium (CVTR2Arif). The TaqMan® assay can be used to quantify S. plymuthica isolates in different ecosystems and in complex substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alström S, Gerhardson B (1987) Characteristics of a Serratia plymuthica isolate from plant rhizospheres. Plant Soil 103(2):185–189

    Article  Google Scholar 

  • Benhamou N, Gagné S, Le Quéré D, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90(1):45–56

    Article  PubMed  CAS  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88(6):952–960

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56(2):250–261

    Article  PubMed  CAS  Google Scholar 

  • Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264(36):21670–21676

    PubMed  CAS  Google Scholar 

  • Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM (2012a) Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. Plant Pathol 61(1):169–182

    Article  CAS  Google Scholar 

  • Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM (2012b) Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathol (in press). doi:10.1111/j.1365-3059.2011.02565.x

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110(1):341–352

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Höfte M (2007) Using Serratia plymuthica to control fungal pathogens of plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2, no. 46

  • De Vleesschauwer D, Chernin L, Höfte MM (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9:9

    Article  PubMed  Google Scholar 

  • Felsenstein J (1993) {PHYLIP}: phylogenetic inference package, version 3.5c, Department of Genetics, University of Washington, Seattle

  • Fujimura M, Kato J, Tosa T, Chibata I (1984) Continuous production of L-arginine using immobilized growing Serratia marcescens cells: effectiveness of supply of oxygen gas. Appl Microbiol Biotech 19(2):79–84

    Article  CAS  Google Scholar 

  • Garbeva P, Voesenek K, van Elsas JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36(9):1453–1463

    Article  CAS  Google Scholar 

  • Gavini F, Ferragut C, Izard D, Trinel PA, Leclerc H, Lefebvre B, Mossel DAA (1979) Serratia fonticola, a new species from water. Int J Syst Bacteriol 29(2):92–101

    Article  Google Scholar 

  • Grimont PAD, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32(1):221–248

    Article  PubMed  CAS  Google Scholar 

  • Grimont PAD, Grimont F (1981) The genus Serratia. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Grimont PAD, Grimont F (1984) Genus VIII. Serratia Bizio 1823, 288AL. Williams and Wilkins, Baltimore

    Google Scholar 

  • Grimont PAD, Grimont F, Dulong de Rosnay HLC, Sneath PHA (1977) Taxonomy of the genus Serratia. J Gen Microbiol 98(1):39–66

    Article  PubMed  CAS  Google Scholar 

  • Grimont PAD, Grimont F, Richard C, Davis BR, Steigerwalt AG, Brenner DJ (1978) Deoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species, with a description of Serratia odorifera sp. nov. (type strain: ICPB 3995). Int J Syst Bacteriol 28(4):453–463

    Article  Google Scholar 

  • Grimont PAD, Grimont F, Lysenko O (1979) Species and biotype identification of Serratia strains associated with insects. Curr Microbiol 2(3):139–142

    Article  Google Scholar 

  • Grimont PAD, Jackson TA, Ageron E, Noonan MJ (1988) Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. Int J Syst Bacteriol 38(1):1–6

    Article  CAS  Google Scholar 

  • Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2002) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37(2):343–351

    Article  Google Scholar 

  • Inceoğlu O, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76(11):3675–3684

    Article  PubMed  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52(10):1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Jafra S, Przysowa J, Gwizdek-Wiśniewska A, van der Wolf JM (2009) Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. J Appl Microbiol 106:268–277

    Article  PubMed  CAS  Google Scholar 

  • Johnson VW, Pearson JF, Jackson TA (2001) Formulation of Serratia entomophila for biological control of grass grub. NZ Plant Protect 54:125–127

    Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35(2):323–331

    Article  CAS  Google Scholar 

  • Kobayashi DY, Guglielmoni M, Clarke BB (1995) Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biol Biochem 27(11):1479–1487

    Article  CAS  Google Scholar 

  • Krastanov A, Blazheva D, Yanakieva I, Kratchanova M (2006) Conversion of sucrose into palatinose in a batch and continuous processes by immobilized Serratia plymuthica cells. Enzyme Microb Technol 39(6):1306–1312

    Article  CAS  Google Scholar 

  • Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85(5):529–534

    Article  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21(5):903–913

    Article  PubMed  CAS  Google Scholar 

  • Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol Biochem 36(4):677–685

    Article  CAS  Google Scholar 

  • Lovell DJ, Bibel DJ (1977) Tween 80 medium for differentiating nonpigmented Serratia from other Enterobacteriaceae. J Clin Microbiol 5:245–247

    PubMed  CAS  Google Scholar 

  • Meziane H, Gavriel S, Ismailov Z, Chet I, Chernin L, Höfte M (2006) Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Postharvest Biol Technol 39(2):125–133

    Article  CAS  Google Scholar 

  • Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124(2):261–268

    Article  CAS  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40(9):2394–2406

    Article  CAS  Google Scholar 

  • Ramirez MJ (1968) Differentiation of KlebsiellaEnterobacter (Aerobacter)– Serratia by biochemical tests and antibiotic susceptibility. Appl Microbiol 16:1548–1550

    PubMed  CAS  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. BioControl 52(1):87–112

    Article  CAS  Google Scholar 

  • Shen S-S, Choi O-H, Lee S-M, Park C-H (2002) In vitro and in vivo activities of a biocontrol agent, Serratia plymuthica A21-4, against Phytophthora capsici. The Plant Pathol J 18(4):221–224

  • Sneh B, Agami O, Baker R (1985) Biological control of Fusarium-wilt in carnation with Serratia liquefaciens and Hafnia alvei isolated from rhizosphere of carnation. J Phytopathol 113(3):271–276

    Article  Google Scholar 

  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis 84(3):334–340

    Article  Google Scholar 

  • Sun J, Daniel R, Wagner-Döbler I, Zeng A-P (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4(1):36

    Article  PubMed  Google Scholar 

  • Trifonova R, Postma J, Verstappen FWA, Bouwmeester HJ, Ketelaars JJMH, Van Elsas J-D (2008) Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms. FEMS Microbiol Ecol 66(1):158–166

    Article  PubMed  CAS  Google Scholar 

  • van der Wolf JM, van Beckhoven JRCM, de Boef E, Roozen NJM (1993) Serological characterization of fluorescent Pseudomonas strains cross-reacting with antibodies against Erwinia chrysanthemi. Eur J Plant Pathol 99(2):51–60

    Google Scholar 

  • Vivas J, González JA, Barbeyto L, Rodríguez LA (2000) Identification of environmental Serratia plymuthica strains with the new combo panels type 1S. Mem Inst Oswaldo Cruz 95:227–229

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Uchida T, Kato J, Chibata I (1980) Continuous production of L-isoleucine using immobilized growing Serratia marcescens cells. Biotechnol Bioeng 22(6):1175–1188

    Article  CAS  Google Scholar 

  • Winzer K, Hardie KR, Williams P (2003) LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53:291–396

    Article  PubMed  CAS  Google Scholar 

  • Wolf PL, Von der Muehll E, Praisler K (1973) A test for bacterial alkaline phosphatase: use in rapid identification of Serratia organisms. Clin Chem 19(11):1248–1249

    PubMed  CAS  Google Scholar 

  • Yang S, Lin S, Kelen GD, Quinn TC, Dick JD, Gaydos CA, Rothman RE (2002) Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. J Clin Microbiol 40(9):3449–3454

    Article  PubMed  CAS  Google Scholar 

  • Zabransky RJ, Hall JW, Day FE, Needham GM (1969) Klebsiella, Enterobacter, and Serratia: biochemical differentiation and susceptibility to ampicillin and three cephalosporin derivatives. Appl Microbiol 18(2):198–203

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was financed by STW Foundation (Technologiestichting STW, The Netherlands) via grant no. 10306 “Curing seed potatoes from blackleg causing bacteria”. We would like to thank Joeke Postma (Plant Research International, Wageningen University and Research Centre, The Netherlands), Paolina Garbeva (Netherlands Institute of Ecology, NIOO-KNAW, The Netherlands) and Sylwia Jafra (Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland) for providing us with the Serratia spp. strains and helpful discussions. Thanks are indebted to M. C. M. Perombelon (ex. SCRI, UK) for his valuable comments on this manuscript and his editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. van der Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czajkowski, R., van der Wolf, J.M. Quantitative and specific detection of the biocontrol agent, Serratia plymuthica, in plant extracts using a real-time TaqMan® assay. J Appl Genetics 53, 457–467 (2012). https://doi.org/10.1007/s13353-012-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0106-0

Keywords

Navigation