Skip to main content
Log in

Long-term trend in potential vorticity intrusion events over the Pacific Ocean: Role of global mean temperature rise

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

In this study, we examine a long-term increasing trend in subtropical potential vorticity (PV) intrusion events over the Pacific Ocean in relation to the global mean temperature rise, based on multiple reanalysis datasets. The frequency of the PV intrusions is closely related to the upper-tropospheric equatorial westerly duct and the subtropical jet (STJ). An overall strengthening of the westerly duct and weakening of the STJ are found to be driven by the warming-induced strengthening of Walker circulation and regional changes in Hadley circulation on multi-decadal timescale, leading to an increase in the PV intrusion frequency over the tropics. The results are robust in all datasets. The multi-decadal strengthening in the Pacific Walker circulation is consistent with the global mean temperature rise. In this way, the PV intrusions are correlated with the warming related global mean temperuate rise. When the interannual variability of ENSO is removed from the intrusion time series, the long-term trend in PV intrusions due to external forcing associated with anthropogenic warming (global mean temperature rise) becomes clearer. The link between the global mean temperature rise and intrusion frequency is further verified by performing a correlation analysis between the two. The significant (> 95%) correlation coefficient is 0.85, 0.94, 0.84, 0.83, and 0.84 for ERA-40, ERA-Interim, NCEP-NCAR, JRA-55, and JRA-25, respectively. This unequivocally indicates that the global mean temperature rise can explain around 69%–88% of the variance related to the long-term increase in PV intrusion frequency over the Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Article  Google Scholar 

  • Brunet, G., and P. H. Haynes, 1996: Low-latitude reflection of Rossby wave Trains. J. Atmos. Sci., 53, 482–496, doi: 10.1175/1520-0469(1996)053<0482:LLRORW>2.0.CO;2.

    Article  Google Scholar 

  • Cane, M. A., A. C. Clement, A. Kaplan, et al., 1997: Twentiethcentury sea surface temperature trends. Science, 275, 957–960, doi: 10.1126/science.275.5302.957.

    Article  Google Scholar 

  • Chung, P. H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate., 26, 361–379, doi: 10.1175/JCLI-D-12-00106.1.

    Article  Google Scholar 

  • Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.

    Article  Google Scholar 

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841, doi: 10.1002/qj.v135:644.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/(ISSN)1477-870X.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate., 19, 5686–5699, doi: 10.1175/JCLI3990.1.

    Article  Google Scholar 

  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829, doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    Article  Google Scholar 

  • Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 1924–1939, doi: 10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.

    Article  Google Scholar 

  • Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan., 93, 5–48, doi: 10.2151/jmsj.2015-001.

    Article  Google Scholar 

  • Kousky, V. E., M. T. Kagano, and I. F. A. Cavalcanti, 1984: A review of the Southern Oscillation: Oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus A, 36, 490–504, doi: 10.3402/tellusa.v36i5.11649.

    Article  Google Scholar 

  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571–576.

    Article  Google Scholar 

  • Lian, T., and D. Chen, 2012: An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Climate, 25, 5361–5373, doi: 10.1175/JCLI-D-11-00663.1.

    Article  Google Scholar 

  • Matthews, A. J., and G. N. Kiladis, 1999: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 3062–3086, doi: 10.1175/1520-0442(1999)012<3062:IBETCA>2.0.CO;2.

    Article  Google Scholar 

  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600, doi: 10.1038/305593a0.

    Article  Google Scholar 

  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.

    Article  Google Scholar 

  • Miller, A. J., D. R. Cayan, T. P. Barnett, et al., 1994: The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7, 21–26, doi: 10.5670/oceanog.

    Article  Google Scholar 

  • Nath, D., W. Chen, H. F. Graf, et al., 2016: Subtropical potential vorticity intrusion drives increasing tropospheric ozone over the tropical central Pacific. Sci. Rep., 6, 21370, doi: 10.1038/srep21370.

    Article  Google Scholar 

  • North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879–887, doi: 10.1175/1520-0469(1984)041<0879:EOFANM>2.0.CO;2.

    Article  Google Scholar 

  • Onogi, K., J. Tsutsui, H. Koide, et al., 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan., 85, 369–432, doi: 10.2151/jmsj.85.369.

    Article  Google Scholar 

  • Rienecker, M. M., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for research and applications. J. Climate, 24, 3624–3648, doi: 10.1175/JCLID-11-00015.1.

    Article  Google Scholar 

  • Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation model ECHAM5. Part I: Model Description. Report No. 349, Hamburg, Germany, Max-Planck-Institut für Meteorologie.

    Google Scholar 

  • Saha, S., S. Moorthi, H. L. Pan, et al., 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi: 10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Tokinaga, H., S. P. Xie, C. Deser, et al., 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439–443, doi: 10.1038/nature11576.

    Article  Google Scholar 

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 19–32, doi: 10.1002/2013EF000165.

    Article  Google Scholar 

  • Uppala, S. M., P. W. Kållberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, doi: 10.1175/JCLI4258.1.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, et al., 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, doi: 10.1038/nature04744.

    Article  Google Scholar 

  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267–285, doi: 10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2.

    Article  Google Scholar 

  • Wang, C., 2005: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future. Diaz, H. F., and R. S. Bradley, Eds. Dordrecht, Springer, 173–202.

    Google Scholar 

  • Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110, D11305, doi: 10.1029/2004JD005664.

    Article  Google Scholar 

  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 3857–3860, doi: 10.1029/2000GL012250.

    Article  Google Scholar 

  • Waugh, D. W., and B. M. Funatsu, 2003: Intrusions into the tropical upper troposphere: Three-dimensional structure and accompanying ozone and OLR distributions. J. Atmos. Sci., 60, 637–653, doi: 10.1175/1520-0469(2003)060<0637:IITTUT>2.0.CO;2.

    Article  Google Scholar 

  • Waugh, D. W., R. A. Plumb, and L. M. Polvani, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a " tropical surf zone” and its effect on interhemispheric propagation. J. Atmos. Sci., 51, 1401–1416, doi: 10.1175/1520-0469(1994)051<1401:NBRTAL>2.0.CO;2.

    Article  Google Scholar 

  • Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.

    Article  Google Scholar 

  • Zhang, W. J., J. P. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi: 10.1029/2010JC006501.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive comments, which helped to improve the paper. We thank the NCEP–NCAR, ECM-WF, and JRA for providing the NCEP-1, ERA-40, ERA-Interim, JRA-55, and JRA-25 data. We also thank Dr. Kaiming Hu for providing the ECHAM5 data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Additional information

Supported by the National Natural Science Foundation of China (41675061, 4167050403, 41550110500, and 41750110484).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Chen, W. & Lan, X. Long-term trend in potential vorticity intrusion events over the Pacific Ocean: Role of global mean temperature rise. J Meteorol Res 31, 906–915 (2017). https://doi.org/10.1007/s13351-017-7021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-7021-6

Key words

Navigation