Skip to main content
Log in

Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161.

    Article  Google Scholar 

  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893–1910.

    Article  Google Scholar 

  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, et al., 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 119, 5105–5122.

    Article  Google Scholar 

  • Chowdary, J. S., C. Gnanaseelan, and S.-P. Xie, 2009: Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical Southwest Indian Ocean. Geophys. Res. Lett., 36, L04607, doi: 10.1029/2008GL036642.

    Article  Google Scholar 

  • Committee on Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, Board on Atmospheric Sciences & Climate, Division on Earth and Life Studies, et al., 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, National Research Council, Washington, DC, 181 pp.

    Google Scholar 

  • Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Du, Y., S.-P. Xie, G. Huang, et al., 2009: Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J. Climate, 22, 2023–2038.

    Article  Google Scholar 

  • Gong, D.-Y., J. Yang, S. J. Kim, et al., 2011: Spring Arctic Oscillation–East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 2199–2216.

    Article  Google Scholar 

  • Gong, D.-Y., Y. Q. Gao, D. Guo, et al., 2014: Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter. Climate Dyn., 42, 1007–1027.

    Article  Google Scholar 

  • Gong, D.-Y., D. Guo, Y. Q. Gao, et al., 2016a: Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean. Climate Dyn., doi: 10.1007/s00382-016-3216-2.

    Google Scholar 

  • Gong, D.-Y., D. Guo, R. Mao, et al., 2016b: Interannual modulation of East African early short rains by the winter Arctic Oscillation. J. Geophys. Res., 121, 9441–9457.

    Google Scholar 

  • Huang, B. H., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107(C11), 3199, doi: 10.1029/2001JC001278.

    Article  Google Scholar 

  • Huang, B. H., and J. Shukla, 2007: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 2917–2936.

    Article  Google Scholar 

  • Izumo, T., C. B. Montégut, J.-J. Luo, et al., 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 5603–5623.

    Article  Google Scholar 

  • Lin, H., and G. Brunet, 2011: Impact of the North Atlantic Oscillation on the forecast skill of the Madden–Julian Oscillation. Geophys. Res. Lett., 38, L02802, doi: 10.1029/2010GL046131.

    Google Scholar 

  • Manola, I., F. M. Selten, W. P. M. de Ruijter, et al., 2015: The ocean–atmosphere response to wind-induced thermocline changes in the tropical southwestern Indian Ocean. Climate Dyn., 45, 989–1007.

    Article  Google Scholar 

  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 1569–1586.

    Article  Google Scholar 

  • Pan, L.-L., and T. Li, 2008: Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375–388.

    Article  Google Scholar 

  • Pokhrel S., H. S. Chaudhari, S. K. Saha, et al., 2012: ENSO, IOD, and Indian summer monsoon in NCEP climate forecast system. Climate Dyn., 39, 2143–2165.

    Article  Google Scholar 

  • Rajeevan M., D. S. Pai, R. A. Kumar, et al., 2007: New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dyn., 28, 813–828.

    Article  Google Scholar 

  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103–135.

    Article  Google Scholar 

  • Sayantani, O., and C. Gnanaseelan, 2015: Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Climate Dyn., 44, 2447–2462.

    Article  Google Scholar 

  • Tozuka, T., M. Nagura, and T. Yamagata, 2014: Influence of the reflected Rossby waves on the western Arabian Sea upwelling region. J. Phys. Oceanogr., 44, 1424–1438.

    Article  Google Scholar 

  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

    Google Scholar 

  • Wang, B., B. Q. Xiang, and J. Li, 2015: Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nature Communications, 6, 7154, doi: 10.1038/ncomms 8154.

    Article  Google Scholar 

  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 4674–4691.

    Article  Google Scholar 

  • Webber, B. G. M., A. J. Matthews, and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 136, 740–754.

    Google Scholar 

  • Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103(C7), 14451–14510.

    Article  Google Scholar 

  • Wu, R. G., and S.-W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115(D8), D08101, doi: 10.1029/2009jd012999.

    Article  Google Scholar 

  • Wu, R. G., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113(D5), D05104, doi: 10.1029/2007jd009316.

    Article  Google Scholar 

  • Xie, S-P., H. Annamalai, F. A. Schott, et al., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864–878.

    Article  Google Scholar 

  • Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Yuan, J. C., S. B. Feldstein, S. Lee, et al., 2011: The relationship between the North Atlantic jet and tropical convection over the Indian and western Pacific Oceans. J. Climate, 24, 6100–6113.

    Article  Google Scholar 

  • Zhou, S. T., and A. J. Miller, 2005: The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 18, 143–159.

    Article  Google Scholar 

Download references

Acknowledgments

The ORAS4 data are obtained from http://www.ecmwf.int/en/research/climate-reanalysis/ ocean-reanalysis. Comments of two anonymous reviewers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Yi Gong.

Additional information

Supported by the National Natural Science Foundation of China (41375071). One of the authors, S. J. Kim, was supported by Project PE16010 of the Korea Polar Research Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, DY., Guo, D., Li, S. et al. Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean. J Meteorol Res 31, 94–106 (2017). https://doi.org/10.1007/s13351-017-6175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6175-6

Key words

Navigation