Skip to main content
Log in

Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584, doi: 10.1126/science.1063315.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., A. Seppälä, P. Jöckel, et al., 2011: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys., 11, 4521–4531, doi: 10.5194/acp-11-4521-2011.

    Article  Google Scholar 

  • Boberg, F., and H. Lundstedt, 2002: Solar wind variations related to fluctuations of the North Atlantic Oscillation. Geophys. Res. Lett., 29, 13-1–13-4, doi: 10.1029/2002GL014903.

  • Boberg, F., and H. Lundstedt, 2003: Solar wind electric field modulation of the NAO: A correlation analysis in the lower atmosphere. Geophys. Res. Lett., 30, 1825, doi: 10.1029/2003GL017360.

    Article  Google Scholar 

  • Bond, G., B. Kromer, J. Beer, et al., 2001: Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136, doi: 10.1126/science.1065680.

    Article  Google Scholar 

  • Cassou, C., C. Deser, and M. A. Alexander, 2007: Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J. Climate, 20, 3510–3526, doi: 10.1175/JCLI4202.1.

    Article  Google Scholar 

  • Chen, W. Y., 1982: Fluctuations in Northern Hemisphere 700-mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808–823, doi: 10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    Article  Google Scholar 

  • Clilverd, M. A., C. J. Rodger, and T. Ulich, 2006: The importance of atmospheric precipitation in stormtime relativistic electron flux drop outs. Geophys. Res. Lett., 33, L01102, doi: 10.1029/2005GL024661.

    Google Scholar 

  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26, 2969–2972, doi: 10.1029/1999GL900613.

    Article  Google Scholar 

  • Czaja, A., and J. Marshall, 2001: Observations of atmosphere–ocean coupling in the North Atlantic. Quart. J. Roy. Meteor. Soc., 127, 1893–1916, doi: 10.1002/qj.49712757603.

    Article  Google Scholar 

  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266, doi: 10.1175/1520-0485(1976)006<0249: POSSTA>2.0.CO;2.

    Article  Google Scholar 

  • Delworth, T. L., 1996: North Atlantic interannual variability in a coupled ocean–atmosphere model. J. Climate, 9, 2356–2375, doi: 10.1175/15200442(1996)009<2356:NAIVIA>2.0.CO;2.

    Article  Google Scholar 

  • Fan, M. Z., and E. K. Schneider, 2012: Observed decadal North Atlantic tripole SST variability. Part I: Weather noise forcing and coupled response. J. Atmos. Sci., 69, 35–50, doi: 10.1175/JAS-D-11-018.1.

    Article  Google Scholar 

  • Holland, G., and C. L. Bruyµere, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617–627, doi: 10.1007/s00382-013-1713-0.

    Article  Google Scholar 

  • Huang Jing, Zhou Limin, Xiao Ziniu, et al., 2013: Effect of solar wind speed on the middle and high atmosphere circulation of meteorological to climatological scale. Chin. J. Space Sci., 33, 637–644. (in Chinese)

    Google Scholar 

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., Eds. AGU, Washington D. C., doi: 10.1029/134GM01.

    Chapter  Google Scholar 

  • Huth, R., L. Pokorná, J. Bochníçek, et al., 2006: Solar cycle effects on modes of low-frequency circulation variability. J. Geophys. Res., 111, D22107, doi: 10.1029/2005JD006813.

    Article  Google Scholar 

  • Ineson, S., A. A. Scaife, J. R. Knight, et al., 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, doi: 10.1038/ngeo1282.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • King, J. H., and N. E. Papitashvili, 2005: Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.

    Article  Google Scholar 

  • Kodera, K., 2002: Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO. Geophys. Res. Lett., 29, 59-1–594, doi: 10.1029/2001GL014557.

  • Kodera, K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys. Res. Lett., 30, 1175, doi: 10.1029/2002GL016584.

    Google Scholar 

  • Kodera, K., and Y. Kuroda, 2005: A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res., 110, D02111, doi: 10.1029/2004JD005258.

    Article  Google Scholar 

  • Kuroda, Y., and K. Kodera, 2002: Effect of solar activity on the polar-night jet oscillation in the Northern and Southern Hemisphere winter. J. Meteor. Soc. Japan, 80, 973–984.

    Article  Google Scholar 

  • Li, S. L., W. A. Robinson, and S. L. Peng, 2003: Influence of the North Atlantic SST tripole on Northwest African rainfall. J. Geophys. Res., 108, 4594, doi: 10.1029/2002JD003130.

    Article  Google Scholar 

  • Li, Y., H. Lu, M. J. Martin, et al., 2011: Nonlinear and nonstationary influences of geomagnetic activity on the winter North Atlantic Oscillation. J. Geophys. Res., 116, D16109, doi: 10.1029/2011JD015822.

    Article  Google Scholar 

  • Lu, H., M. J. Jarvis, and R. E. Hibbins, 2008: Possible solar wind effect on the northern annular mode and Northern Hemispheric circulation during winter and spring. J. Geophys. Res., 113, D23104, doi: 10.1029/2008JD010848.

    Article  Google Scholar 

  • Maliniemi, V., T. Asikainen, and K. Mursula, 2014: Spatial distribution of Northern Hemisphere winter temperatures during different phases of the solar cycle. J. Geophys. Res., 119, 9752–9764, doi: 10.1002/2013JD021343.

    Google Scholar 

  • Marshall, J., Y. Kushner, D. Battisti, et al., 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 1863–1898, doi: 10.1002/joc.693.

    Article  Google Scholar 

  • McIntosh, S. W., R. J. Leamon, L. D. Krista, et al., 2015: The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun., 6, 6491, doi: 10.1038/ncomms7491.

    Article  Google Scholar 

  • Mironova, I., B. Tinsley, and L. M. Zhou, 2012: The links between atmospheric vorticity, radiation belt electrons, and the solar wind. Adv. Space Res., 50, 783–790, doi: 10.1016/j.asr.2011.03.043.

    Article  Google Scholar 

  • Paeth, H., A. Hense, R. Glowienka-Hense, et al., 1999: The North Atlantic Oscillation as an indicator for greenhouse-gas induced regional climate change. Climate Dyn., 15, 953–960, doi: 10.1007/s003820050324.

    Article  Google Scholar 

  • Randall, C. E., V. L. Harvey, G. L. Manney, et al., 2005: Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys. Res. Lett., 32, L05802, doi: 10.1029/2004GL022003.

    Article  Google Scholar 

  • Randall, C. E., V. L. Harvey, C. S. Singleton, et al., 2007: Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J. Geophys. Res., 112, D08308, doi: 10.1029/2006JD007696.

    Article  Google Scholar 

  • Rodríguez-Fonseca, B., I. Polo, E. Serrano, et al., 2006: Evaluation of the North Atlantic SST forcing on the European and Northern African winter climate. Int. J. Climatol., 26, 179–191, doi: 10.1002/joc.1234.

    Article  Google Scholar 

  • Rozanov, E., M. Calisto, T. Egorova, et al., 2012: Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys., 33, 483–501, doi: 10.1007/s10712-012-9192-0.

    Article  Google Scholar 

  • Scaife, A. A., S. Ineson, J. R. Knight, et al., 2013: A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett., 40, 434–439, doi: 10.1002/grl.50099.

    Article  Google Scholar 

  • Seppälä, A., H. Lu, M. A. Clilverd, et al., 2013: Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. J. Geophys. Res., 118, 2169–2183, doi: 10.1002/jgrd.50236.

    Google Scholar 

  • Shindell, D. T., G. A. Schmidt, M. E. Mann, et al., 2001: Solar forcing of regional climate change during the Maunder minimum. Science, 294, 2149–2152, doi: 10.1126/science.1064363.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.

    Article  Google Scholar 

  • Solomon, S., P. J. Crutzen, and R. G. Roble, 1982: Photochemical coupling between the thermosphere and the lower atmosphere: 1 Odd nitrogen from 50 to 120 km. J. Geophys. Res., 87, 7206–7220, doi: 10.1029/JC087iC09p07206.

    Article  Google Scholar 

  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation–what role for the ocean? Atmos. Sci. Lett., 1, 89–100, doi: 10.1006/asle.2000.0021.

    Article  Google Scholar 

  • Tinsley, B. A., 2008: The global atmospheric electric circuit and its effects on cloud microphysics. Rep. Prog. Phys., 71, 066801, doi: 10.1088/0034-4885/71/6/066801.

    Article  Google Scholar 

  • Tinsley, B. A., 2012: A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation. Adv. Space Res., 50, 791–805, doi: 10.1016/j.asr.2012.04.008.

    Article  Google Scholar 

  • Wallace, J. M., and D. W. J. Thompson, 2002: Annular modes and climate prediction. Phys. Today, 55, 28–33, doi: 10.1063/1.1461325.

    Article  Google Scholar 

  • Wang, C. Z., and S. F. Dong, 2010: Is the basinwide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming? Geophys. Res. Lett., 37, L08707, doi: 10.1029/2010GL042743.

    Google Scholar 

  • Wang, W. L., B. T. Anderson, R. K. Kaufmann, et al., 2004: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Climate, 17, 4752–4759, doi: 10.1175/JCLI-3186.1.

    Article  Google Scholar 

  • Woodruff, S. D., H. F. Diaz, S. J. Worley, et al., 2005: Early ship observational data and ICOADS. Climatic Change, 73, 169–194, doi: 10.1007/s10584-005-3456-3.

    Article  Google Scholar 

  • Woodruff, S. D., S. J. Worley, S. J. Lubker, et al., 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951–967, doi: 10.1002/joc.2103.

    Article  Google Scholar 

  • Wu, L. X., and Z. Y. Liu, 2005: North Atlantic decadal variability: Air-sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331–349, doi: 10.1175/JCLI-3264.1.

    Article  Google Scholar 

  • Wu, R. G., S. Yang, S. Liu, et al., 2010: Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115, D21107, doi: 10.1029/2010JD014422.

    Article  Google Scholar 

  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, doi: 10.1175/15200442-16.10.1601.

    Article  Google Scholar 

  • Zhou, L. M., B. Tinsley, and J. Huang, 2014: Effects on winter circulation of short and long term solar wind changes. Adv. Space Res., 54, 2478–2490, doi: 10.1016/j.asr.2013.09.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Li  (李德林).

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2012CB957804) and National Natural Science Foundation of China (41490642 and 41375069).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Li, D. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic. J Meteorol Res 30, 312–327 (2016). https://doi.org/10.1007/s13351-016-5087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-5087-1

Key words

Navigation