Skip to main content
Log in

Nonlinear responses of oceanic temperature to wind stress anomalies in tropical Pacific and Indian Oceans: A study based on numerical experiments with an OGCM

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

As a highly nonlinear dynamic system, oceanic general circulation models (OGCMs) usually exhibit nonlinear responses to prescribed wind stress forcing. To explore mechanisms for these nonlinear responses, we designed and conducted three idealized numerical experiments with an OGCM with modified wind stress forcing. In the experiments, the climatological mean wind stress was identical, and the only differences in external forcing were wind stress anomalies. The wind anomalies were set to zero in a control run, and the observed wind stress anomalies with and without reversed signs were superimposed on the mean climatology in two sensitivity experiments. Forced by the prescribed wind stress anomalies in sensitivity runs, the OGCM well reproduced the El Ni˜no–Southern Oscillation (ENSO) and the Pacific and Indian Ocean Dipole (IOD) in the Indian Ocean, as well as the asymmetry between positive and negative phases of these modes. Relative to the control run, the two sensitivity runs exhibited almost identical changes in the mean climate state, although the wind stress anomalies were reversed in these two experiments. Thus, it was concluded that the asymmetry of wind stress anomalies contributes only slightly to the mean state changes and ocean internal dynamics was the main contributor. Further heat budget analysis suggested that nonlinear temperature advection terms, including both mean advection and perturbed advection, favor the ENSO/IOD rectified effect on the mean state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S. I., and Jin Feifei, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 3421–3432.

    Article  Google Scholar 

  • An, S. I., and Jin Feifei, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 2399–2412.

    Article  Google Scholar 

  • An, S. I., Y. G. Ham, J. S. Kug, et al., 2005: El Ni˜no-La Ni˜na asymmetry in the coupled model intercomparison project simulations. J. Climate, 18, 2617–2627.

    Article  Google Scholar 

  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphereocean model. J. Atmos. Sci., 45, 2889–2919.

    Article  Google Scholar 

  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Ni˜no. Geophys. Res. Lett., 26, 1027–1030, doi: 10.1029/1999GL900161.

    Article  Google Scholar 

  • Cai Wenju, H. H. Hendon, and G. Meyers, 2005: Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18, 1449–1468.

    Article  Google Scholar 

  • Cai Wenju and Qiu Yun, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 2880–2890.

    Article  Google Scholar 

  • Cai Yi, Wang Zhanggui, Yu Zhouwen, et al., 2003: The EOF analysis of temperature and zonal flow in the equatorial Pacific Ocean and the study of the El Ni˜no forecasting. Acta Oceanol. Sinica, 25, 12–18. (in Chinese)

    Google Scholar 

  • Cai Yi, Li Hai, and Zhang Renhe, 2008: A study on the relationship between ENSO and tropical Indian Ocean temperature. Acta Meteor. Sinica, 66, 120–124. (in Chinese)

    Google Scholar 

  • Canuto, V. M., and M. S. Dubovikov, 2005: Modeling mesoscale eddies. Ocean Modeling, 8, 1–30.

    Article  Google Scholar 

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Choi, J., S. I. An, and S. W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 2631–2644.

    Article  Google Scholar 

  • Choi, J., S. I. An, S. W. Yeh, et al., 2013: ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 1485–1501.

    Article  Google Scholar 

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Ni˜no. J. Climate, 14, 3086–3101.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Hua Lijuan, Yu Yongqiang, and Yin Baoshu, 2010: Numerical modeling of the asymmetry of Indian Ocean dipole and its mechanism. Chinese J. Atmos. Sci., 34, 1046–1058. (in Chinese)

    Google Scholar 

  • Hua Lijuan, Yu Yongqiang, and Sun Dezheng, 2015: A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Climate, 28, 1362–1382.

    Article  Google Scholar 

  • Hong, C. C., T. Li, L. Ho, et al., 2008: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 4834–4848.

    Article  Google Scholar 

  • Large, W. G., G. Danabasoglu, S. C. Doney, et al., 1997: Sensitivity to surface forcing and boundary layer mixing in a Global Ocean Model: Annual-mean climatology. J. Phys. Oceanogr., 27, 2418–2447.

    Article  Google Scholar 

  • Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4. US Department of Commerce, Washington D.C., 1–117.

    Google Scholar 

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: tWorld Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3. US Department of Commerce, Washington D.C., 1–99.

    Google Scholar 

  • Li Yangchun, Xu Yongfu, Chu Min, et al., 2012: Influences of climate change on the uptake and storage of anthropogenic CO2 in the global ocean. Acta Meteor. Sinica, 26, 304–317, doi: 10.1007/s13351-012-0304-z.

    Article  Google Scholar 

  • Liang Jin, Yang Xiuqun, and Sun Dezheng, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 7590–7606.

    Article  Google Scholar 

  • Liu Hailong, Zhang Xuehong, Yu Yongqiang, et al., 2004: Manual for LASG/IAP Climate System Ocean Model. Science Press, Beijing, 1–108. (in Chinese)

    Google Scholar 

  • Liu Hailong, Zhang Xuehong, Li Wei, et al., 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu Hailong, Lin Pengfei, Yu Yongqiang, et al., 2012: The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) Version 2. Acta Meteor. Sinica, 26, 318–329, doi: 10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Mélice, J. L., and J. Servain, 2003: The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO, and southern Ocean. Climate Dyn., 20, 447–464.

    Google Scholar 

  • Ogata, T., Xie Shangping, Lan Jian, et al., 2013: Importance of ocean dynamics for the skewness of the Indian Ocean dipole mode. J. Climate, 26, 2145–2159.

    Article  Google Scholar 

  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177–192.

    Article  Google Scholar 

  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Ni˜no and La Ni˜na. J. Climate, 23, 5826–5843.

    Article  Google Scholar 

  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 3761–3774.

    Article  Google Scholar 

  • Roeske, F., 2001: An Atlas of Surface Flues Based on the ECMWF Reanalysis-A Climatological Dataset to Force Global Ocean General Circulation Models. Report No. 23, Hamburg: Max-Planck-Institut f¨ur Meteorologie, 1–31.

    Google Scholar 

  • Rong Xinyao, Zhang Renhe, Li T., et al., 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. R. Meteor. Soc., 137, 894–907.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 2735–2751.

    Article  Google Scholar 

  • Servain, J., 1991: Simple climatic indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96, 15137–15146.

    Article  Google Scholar 

  • Su Jingzhi, Zhang Renhe, Li T., et al., 2010: Causes of the El Ni˜no and La Ni˜na amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617.

    Article  Google Scholar 

  • Sun Dezheng, 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Ni˜no warming. J. Climate, 16, 185–205.

    Article  Google Scholar 

  • Sun Dezheng and Zhang Tao, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710.

  • Sun Dezheng, Zhang Tao, Sun Yan, et al., 2014: Rectification of El Ni˜no-Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 2545–2561.

    Article  Google Scholar 

  • Sun Yan, Sun Dezheng, Wu Lixin, et al., 2012: The western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci., 30, 940–953.

    Article  Google Scholar 

  • Uppala, S. M., P. W. Kållberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Yan Bangliang and Zhang Renhe, 2002: The role of atmosphere climate basic state in the formation of westerly over the equatorial Pacific. Acta Oceanol. Sin., 24, 39–50. (in Chinese)

    Google Scholar 

  • Yu Jinyi and S. T. Kim, 2011: Reversed spatial asymmetries between El Ni˜no and La Ni˜na and their linkage to decadal ENSO modulation in CMIP3 models. J. Climate, 24, 5423–5434.

    Article  Google Scholar 

  • Yu Yongqiang, Zheng Weipeng, Wang Bin, et al., 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99–117.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Ni˜no–Southern oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhang Tao, Sun Dezheng, Neale R., et al., 2009: An evaluation of ENSO asymmetry in the community climate system models: A view from the subsurface. J. Climate, 22, 5933–5961.

    Article  Google Scholar 

  • Zheng Xiaotong, Xie Shangping, Vecchi G. A., et al., 2010: Indian Ocean dipole response to global warming: Analysis of ocean-atmospheric feedbacks in a coupled model. J. Climate, 23, 1240–1253.

    Article  Google Scholar 

  • Zhong Aihong, H. H. Hendon, and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 3634–3649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu  (俞永强).

Additional information

Supported by the “Strategic Priority Research Program Climate Change: Carbon Budget and Relevant Issues” of the Chinese Academy of Sciences (XDA05110302), National (Key) Basic Research and Development (973) Program of China (2013CB956204), and Jiangsu Collaborative Innovation Center for Climate Change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, L., Yu, Y. Nonlinear responses of oceanic temperature to wind stress anomalies in tropical Pacific and Indian Oceans: A study based on numerical experiments with an OGCM. J Meteorol Res 29, 608–626 (2015). https://doi.org/10.1007/s13351-015-4115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-4115-x

Keywords

Navigation