Skip to main content
Log in

Impact of 4DVAR assimilation of AIRS total column ozone observations on the simulation of Hurricane Earl

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The Atmospheric Infrared Sounder (AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution. In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational (4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity (PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies. With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumann H. H., M. T. Chahine, C. Gautier, et al., 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253–264.

    Article  Google Scholar 

  • Bian J. C., A. Gettelman, H. B. Chen, et al., 2007: Validation of satellite ozone profile retrievals using Beijing ozone sonde data. J. Geophys. Res., 112, D06305, doi: 10.1029/ 2006JD007502.

    Google Scholar 

  • Bosart L. F., 2003: Tropopause folding, upper-level frontogenesis, and beyond. Meteor. Monogr., 31, 13–47.

    Article  Google Scholar 

  • Carsey T. P., and H. E. Willoughby, 2005: Ozone measurements from eyewall transects of two Atlantic tropical cyclones. Mon. Wea. Rev., 133, 166–174.

    Article  Google Scholar 

  • Danielsen E. F., 1968: Stratospheric-tropospheric exchange based on radio activity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518.

    Article  Google Scholar 

  • Davis C., N. S. Low, M. A. Shapiro, et al., 1999: Direct retrieval of wind from Total Ozone Mapping Spectrometer (TOMS) data: Examples from FASTEX. Quart. J. Roy. Meteor. Soc., 125, 3375–3391.

    Google Scholar 

  • Ding Weiyu, Wan Qilin, Zhang Chengzhong, et al., 2010: Assimilation of HIRS/3 brightness temperature in cloud condition and its impact on Typhoon Chanchu forecast. Acta Meteor. Sinica, 68, 70–78. (in Chinese)

    Google Scholar 

  • Dong K., and C. J. Neumann, 1983: On the relative motion of binary tropical cyclones. Mon. Wea. Rev., 111, 945–953.

    Article  Google Scholar 

  • Durnford D., J. Gyakum, and E. Atallah, 2009: The conversion of total column ozone data to numerical weather prediction model initializing fields, with simulations of the 24–25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 137, 161–188.

    Article  Google Scholar 

  • Grell G. A., J. Dudhia, and D. R. Stauffer, 1994: A Description of the Fifth Generation Penn State/NCARMesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR, 117 pp.

    Google Scholar 

  • Holland G. J., 1984: Tropical cyclone motion: A comparison of theory and observation. J. Atmos. Sci., 41, 68–75.

    Article  Google Scholar 

  • Hood L. L., and B. E. Soukharev, 2005: Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J. Atmos. Sci., 62, 3724–3740.

    Article  Google Scholar 

  • Jang K. I., X. Zou, M. S. F. V. De Pondeca, et al., 2003: Incorporating TOMS ozone measurements into the prediction of the Washington D.C. winter storm during 24–25 January 2000. J. Appl. Meteor., 42, 797–812.

    Article  Google Scholar 

  • Le Marshall J. F., L. M. Leslie, Jr. R. F. Abbey, et al., 2002: Tropical cyclone track and intensity prediction: The generation and assimilation of highdensity, satellite-derived data. Meteor. Atmos. Phys., 80, 43–57.

    Article  Google Scholar 

  • Li Jun and Fang Zongyi, 2012: The development of satellite meteorology—Challenges and opportunities. Meteor. Mon., 38, 129–146. (in Chinese)

    Google Scholar 

  • Liu Yin, 2014: Quality control of FY-3A total column ozone and its application in typhoons Tembin (2012) and Isaac (2012). Chinese J. Atmos. Sci., 38, 1066–1078. (in Chinese)

    Google Scholar 

  • Monahan K. P., L. L. Pan, A. J. McDonald, et al., 2007: Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA. J. Geophys. Res., 112, D17304, doi: 10.1029/2006JD008181.

  • Normand C., 1953: Atmospheric ozone and the upper-air conditions. Quart. J. Roy. Meteor. Soc., 79, 39–50.

    Article  Google Scholar 

  • Ohring G., and H. S. Muench, 1960: Relationships between ozone and meteorological parameters in the lower stratosphere. J. Atmos. Sci., 17, 195–206.

    Google Scholar 

  • Pan L. L., K. P. Bowman, M. Shapiro, et al., 2007: Chemical behavior of the tropopause observed during the Stratosphere-Troposphere Analyses of Regional Transport Experiment. J. Geophys. Res., 112, D18110, doi: 10.1029/2007JD008645.

  • Park K., and X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054–2069.

    Article  Google Scholar 

  • Pittman J. V., L. L. Pan, J. C. Wei, et al., 2009: Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in-situ aircraft measurements. J. Geophys. Res., 114, D24109, doi: 10.1029/2009JD012493.

    Article  Google Scholar 

  • Rodgers E. B., J. Stout, J. Steranka, et al., 1990: Tropical cyclone–upper atmospheric interaction as inferred from satellite total ozone observations. J. Appl. Meteor., 29, 934–954.

    Article  Google Scholar 

  • Shapiro M. A., A. J. Krueger, and P. J. Kennedy, 1982: Nowcasting the position and intensity of jet streams using a satellite-borne total ozone mapping spectrometer. Nowcasting. Academic Press, San Diego, 137–145.

    Google Scholar 

  • Stout J., and E. B. Rodgers, 1992: Nimbus-7 total ozone observations of western North Pacific tropical cyclones. J. Appl. Meteor., 31, 758–783.

    Article  Google Scholar 

  • Tian B., Y. L. Yung, D. E. Waliser, et al., 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L08704, doi: 10.1029/2007GL029451.

    Google Scholar 

  • Velden C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244–253.

    Article  Google Scholar 

  • Wang Bin, R. L. Elsberry, Wang Yuqing, et al., 1998: Dynamics in tropical cyclone motion: A review. Chinese J. Atmos. Sci., 22, 535–547. (in Chinese)

    Google Scholar 

  • Wang H., X. Zou, and G. Li, 2012: An improved quality control for AIRS total column ozone observations within and around hurricanes. J. Atmos. Oceanic Technol., 29, 417–432.

    Article  Google Scholar 

  • Wang Yunfeng, Wang Bin, Fei Jianfang, et al., 2013: The effects of assimilating satellite brightness temperature and bogus data on the simulation of Typhoon Kalmaegi (2008). Acta Meteor. Sinica, 27, 415–434.

    Article  Google Scholar 

  • Wu L. G., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899–1911.

    Article  Google Scholar 

  • Wu T. C., H. Liu, S. J. Majumdar, et al., 2014: Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 142, 49–71.

    Article  Google Scholar 

  • Wu Y., and X. Zou, 2008: Numerical test of a simple approach for using TOMS total ozone data in hurricane environment. Quart. J. Roy. Meteor. Soc., 134, 1397–1408.

    Article  Google Scholar 

  • Xue Jishan, 2009: Scientific issues and perspective of assimilation of meteorological satellite data. Acta Meteor. Sinica, 67, 903–911. (in Chinese)

    Google Scholar 

  • Yan Wei, Han Ding, Zhou Xiaoke, et al., 2013: Analysing the structure characteristics of tropical cyclones based on CloudSat satellite data. Chinese J. Geophys., 56, 1809–1824. (in Chinese)

    Google Scholar 

  • Zou X., F. Vandenberghe, M. Pondeca, et al., 1997: Introduction to Adjoint Techniques and the MM5 Adjoint Modelling System. NCAR Technical Note, NCAR/TN-435-STR, 117 pp.

    Google Scholar 

  • Zou X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836–860.

    Article  Google Scholar 

  • Zou X., and Y. H. Wu, 2005: On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes. J. Geophys. Res., 110, D06109, doi: 10.1029/ 2004JD005019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu  (刘 寅).

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201406008), National Natural Science Foundation of China (91337218), Research Innovation Program for College Graduates of Jiangsu Province (CXZZ13-0506), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zou, X. Impact of 4DVAR assimilation of AIRS total column ozone observations on the simulation of Hurricane Earl. J Meteorol Res 29, 257–271 (2015). https://doi.org/10.1007/s13351-015-4058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-4058-2

Keywords

Navigation